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A survey of algebraic actions
of the discrete Heisenberg group

D. Lind and K. Schmidt

Abstract. The study of actions of countable groups by automorphisms
of compact Abelian groups has recently undergone intensive development,
revealing deep connections with operator algebras and other areas. The
discrete Heisenberg group is the simplest non-commutative example, where
dynamical phenomena related to its non-commutativity already illustrate
many of these connections. The explicit structure of this group means that
these phenomena have concrete descriptions, which are not only instances
of the general theory but are also testing grounds for further work. This
paper surveys what is known about such actions of the discrete Heisenberg
group, providing numerous examples and emphasizing many of the open
problems that remain.
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1. Introduction

Since Halmos’s observation [29] in 1943 that automorphisms of compact groups
automatically preserve Haar measure, these maps have provided a rich class of
examples in dynamics. In case the group is Abelian, its dual group is a module over
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the Laurent polynomial ring Z[z*]. Such modules have a well-developed structure
theory, which enables a comprehensive analysis of general automorphisms in terms
of basic ‘building blocks’ that can be completely understood.’

The roots of the study of several commuting algebraic maps can be traced back to
the seminal 1967 paper of Furstenberg [22], where he considered the joint dynamical
properties of multiplication by different integers on the additive torus. In 1978
Ledrappier [37] gave a simple example of a mixing action of Z? by automorphisms
of a compact Abelian group that was not mixing of higher orders. For an action
by d commuting automorphisms, the dual group is a module over the Laurent
polynomial ring Z[uli7 . ,uilt], that is, the integral group ring ZZ% of Z%. The
commutative algebra of such modules provides effective machinery for analyzing
such actions. This point of view was initiated in 1989 by Kitchens and the second
author [36], and a fairly complete theory of the dynamical properties of such actions
is now available [60].

Let A denote an arbitrary countable group, and let o denote an action of A by
automorphisms of a compact Abelian group, or an algebraic A-action. The initial
steps in analyzing such actions were taken in [60], Chap. 1 and give general criteria
for some basic dynamical properties such as ergodicity and mixing.

In 2001 Einsiedler and Rindler [18] studied the special case when A =T, the dis-
crete Heisenberg group, as a first step towards algebraic actions of non-commutative
groups. Here the concrete nature of I' suggests that there should be specific answers
to the natural dynamical questions, and they give several instances of this together
with instructive examples. However, the algebraic complexity of the integral group
ring ZI" prevents the comprehensive analysis available in the commutative case.

A dramatic new development occurred in 2006 with the work of Deninger on
entropy for principal A-actions. Let f € ZA, and let ZAf denote the princi-
pal left ideal generated by f. Then A acts on the quotient ZA/ZAf, and there
is a dual A-action ay on the compact dual group, called a principal A-action.
Deninger showed in [15] that in many cases the entropy of a; equals the loga-
rithm of the Fuglede-Kadison determinant of the linear operator corresponding
to f on the group von Neumann algebra of A. In case A = Z¢, this reduces to
the calculation in [44] of entropy in terms of the logarithmic Mahler measure of f.
Subsequent work by Deninger, Li, Schmidt, Thom, and others shows that this and
related results hold in great generality (see, for example, [17], [38], and [40]). In [40]
the authors proved that three different concepts connected with A-actions, namely,
entropy, Fuglede-Kadison determinants, and L?-torsion, coincide, revealing deep
connections that are only partly understood.

L Russian editor’s note: It clearly was not the authors’ intention to give a survey of the whole of
algebraic dynamics, which is a significant chapter of both ergodic theory and the theory of groups
of algebraic automorphisms. Their goal is more specific. Nevertheless, in connection with the
pioneering works of Halmos one cannot fail to mention that at about the same time several papers
of V. A. Rohlin on ergodic theory appeared, containing many important results on the ergodic
and spectral properties of automorphisms of compact Abelian groups. Subsequently, Rohlin and
a whole group of his followers proved fundamental results on the entropy and other properties of
such automorphisms.
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These ideas have some interesting consequences. For example, by computing the
entropy of a particular Heisenberg action in two different ways, we can show that

n—1
0 1
H [1 e2m’(l~ca+b):| H =0 (1.1)

k=0

1
lim — log
n—oo N

for almost every pair (a,b) of real numbers. Despite its simplicity, this fact does
not appear to follow from known results on random matrix products.

Our purpose here is to survey what is known for the Heisenberg case A = T,
and to point out many of the remaining open questions. As I' is the simplest
non-commutative example (other than finite extensions of Z¢, which are too close
to the Abelian case to be interesting), any results will indicate limitations of what
a general theory can accomplish. Also, the special structure of I'" should enable
explicit answers to many questions, and yield particular examples of various dynam-
ical phenomena. It is also quite instructive to see how a very general machinery,
used for algebraic actions of arbitrary countable groups, can be made quite concrete
for the case of I". We hope to inspire further work by making this special case both
accessible and attractive.

2. Algebraic actions

Let A be a countable discrete group. The integral group ring ZA of A consists of
all finite sums of the form g = > g50 with g5 € Z, equipped with the obvious ring
operations inherited from the multiplication in A. The support of g is the subset
supp(g) = {6 € A: g5 # 0}

Suppose that A acts by automorphisms of a compact Abelian group X. Such
actions are called algebraic A-actions. Denote the action of 6 € A ont € X
by ¢ -t. Let M be the (discrete) dual group of X, with additive dual pairing
denoted by (t,m) for t € X and m € M. Then M becomes a module over ZA by
defining § - m to be the unique element of M so that (t,d-m) = (5= - t,m) for
all t € X, and extending this to additive integral combinations in ZA.

Conversely, if M is a ZA-module, its compact dual group X, = M carries
a A-action ajs dual to the A-action on M. Thus, there is a 1-1 correspondence
between algebraic A-actions and ZA-modules.

Let T = R/Z be the additive torus. Then the dual group of M = ZA can
be identified with T? via the pairing (t,g) = Y s5ts95 where t = (t5) € T® and
9= 5950 € ZA.

For § € A, the action of § on a t € T is defined via duality by (6-t, g) = (t,0'-g)
for all g € ZA. By taking ¢ = § € A, we get that (6 -¢)s = ty-15. It is sometimes
convenient to think of elements in T as infinite formal sums ¢ = > 5 ts0, and then
0-t =7 s5ts00 =) stg-150. This allows a well-defined multiplication of elements
in T by elements from ZA, both on the left and on the right.

We remark that the shift-action (0 - t)s = tp-15 is opposite to the traditional
shift direction when A is Z or Z%, but is forced when A is non-commutative. This
has sometimes caused confusion; for example, the last displayed equation in [18§],
p- 118 is not correct.
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Now fix f € ZA. Let ZAf be the principal left ideal generated by f. The
quotient module ZA/ZAf has dual group Xy C T2. An element t € T? is in Xy
if and only if (t,gf) = 0 for all ¢ € ZA. This is equivalent to the condition
that (t- f*,g) = 0 for all g € ZA, where f* = > s fs6~'. Hence, t € X exactly
when t - f* = 0, with the above conventions for right multiplication of elements
in T2 by members of ZA. In other words, if we define ps(t) =t - f* to be right
convolution by f*, then Xy is the kernel of py. In terms of coordinates, ¢ is in Xy
precisely when ) s tg5fs = 0 for all 6 € A.

Our focus here is on the discrete Heisenberg group I', generated by elements z,
y, and z subject to the relations xz = zx, yz = zy, and yr = zyz. Alternatively,
T is the subgroup of SL(3,Z) generated by the elements

1 0 0 1 1 0 1 0 1
r— |0 1 1], y«< |0 1 0, and 2z« |0 1 0
0 0 1 0 0 1 0 0 1

We will sometimes use the notation R for the integral group ring ZI" of I' when
emphasizing its ring-theoretic properties. The center of I is Z = {z*: k € Z}. The
center of R is then the Laurent polynomial ring ZZ = Z[2*]. Hence, every element
of R can be written as

9= gumz"y' 2" = gulz)z"y,
k.l

k,l,m

where grim € Z and gy (z) € ZZ. For g = Ek’l gri(z)xFy! € ZT', define the Newton
polygon A (g) of g to be the convex hull in R? of those points (k,l) for which
gk (2) # 0. In particular, 4 (0) = @. Because ZZ is an integral domain, it is easy
to verify that .4 (gh) equals the Minkowski sum A4 (g) + 4 (h) for all g,h € ZI.
This shows that ZI" has no non-trivial zero-divisors. However, a major difference

between the commutative case and ZI" is that unique factorization into irreducibles
fails for ZT".

Example 2.1. It is easy to verify that
(y =Dy —2)(@+1) = (zy2> —azz+y —2)(y - 1).

Each of the linear factors is clearly irreducible by a Newton polygon argument.
We claim that f(z,y,2) = xyz? — 22 + y — z cannot be factored in ZI'. Note
that .4 (f) = [0,1]%. Suppose that f = gh. Adjusting by units and reordering
factors if necessary, we may assume that g and i have the form g(z,y, 2) = go(z) +
g91(2)z and h(z,y, z) = ho(2) + h1(2)y. Expanding gh, we find that

go(2)ho(2) = =2, go(2)h1(2) =1, g1(2)ho(z) = =2, gi1(2)h1(z) = 2°.

Hence, go(2) = h1(2)7! = g1(2)272 and ho(z) = —2¢1(2)~!. Then we would have

—z=go(2)ho(z) = (gl(z)zfz) (—zgl(z)*l) =—z"1

which is not true. This proves that f has no non-trivial factorizations in ZI'.
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Since T' is nilpotent of rank 2, it is polycyclic, and so R is both left- and
right-Noetherian, that is, R satisfies the ascending chain condition on both left
ideals and on right ideals [56].

Suppose now that M is a finitely generated left R-module, say generated by
mi,...,m;. The map R' — M defined by [g1,...,q] — gimq1 + - + gy is
surjective. Its kernel K is a left R-submodule of the Noetherian module R!, hence
also finitely generated, say by [fi1,---, fuls- -« [fr1s- -+, fu]- Let F = [fi;] € RF*!
be the rectangular matrix whose rows are the generators of K. Then K = RFF,
and M = R'/RFF. We will denote the corresponding algebraic I'-action for this
presentation of M by ap. Note that when k& =1 = 1 we are reduced to the case
F = [f], corresponding to the quotient module R/Rf and the principal I'-action ay.

3. Ergodicity

Let X be a compact Abelian group and let p denote Haar measure on X, normal-
ized so that u(X) = 1. If ¢ is a continuous automorphism of X, then the measure v
defined by v(E) = pu(¢(E)) is also a normalized translation-invariant measure.
Hence v = pu, and p is ¢-invariant.

This shows that if « is an algebraic action of a countable group A on X, then
« is p-measure-preserving. A measurable set £ C X is said to be a-invariant if
o’ (E) agrees with F off a null set for every § € A. The action « is ergodic if the
only a-invariant sets have measure 0 or 1. The following, which is a special case of
a result due to Kaplansky [33], gives an algebraic characterization of ergodicity.

Lemma 3.1 ([60], Lemma 1.2). Let A be a countable discrete group, and o be an
algebraic A-action on a compact Abelian group X whose dual group is M. Then
« 1s ergodic if and only if the A-orbit of every non-zero element of M is infinite.

Roughly speaking, this result follows from the observation that the existence of
a bounded measurable a-invariant function on X is equivalent to the existence
of a non-zero finite A-orbit in M.

For actions of the Heisenberg group I', this raises the question of characterizing
those F € R**! for which ap is ergodic. The first result in this direction is due to
Hayes.

Theorem 3.2 ([30], Theorem 2.3.6). For every f € ZI' the principal algebraic
I'-action o is ergodic.

Proof. We give a brief sketch of the proof. First recall that ZZ is a unique factoriza-
tion domain. Define the content c(g) of an element g = 3=, ; gij(2)x"y’ € ZI'\ {0}
to be the greatest common divisor in ZZ of the non-zero coefficient polynomi-
als ¢;;(2), and put c(0) = 0. A simple variant of the proof of Gauss’s lemma shows
that c(gh) = c(g)c(h) for all g,h € ZT.

Now fix f € ZI' = R. The case f = 0 is trivial, so assume that f # 0. Suppose
that h + Rf has finite I'-orbit in R/Rf. Then there are m,n > 1 such that
(™ —1)h = g1f and (2™ — 1)h = gof for some g1,92 € R. And then

c((@™ = Dh) = c(@™ = 1)e(h) = c(h) = c(g1)c(f),
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so that c(f) divides c(h) in ZZ. Also,

c((z" = 1h) = (" = D)e(h) = c(g2)e(f),

so that (2" — 1)[c(h)/c(f)] = c(g2), and hence z™ — 1 divides c(g2). Therefore,
g2/(z" —1) € R, and so h = [g2/(2™ — 1)]f € Rf, showing that h + Rf = 0
in R/Rf. O

Hayes called a group A principally ergodic if every principal algebraic A-action is
ergodic. He extended Theorem 3.2 to show that the following classes of groups are
principally ergodic: torsion-free nilpotent groups that are not virtually cyclic (that
is, do not contain a cyclic subgroup of finite index), free groups on more than one
generator, and groups that are not finitely generated. Clearly, Z is not principally
ergodic, since for example the action of z on the module Z[z*]/(z* — 1) dualizes
to a k x k permutation matrix on T¥, which is not ergodic.

Recently Li, Peterson, and the second author used a very different approach
to proving principal ergodicity, based on cohomology [39]. These methods greatly
increased the collection of countable discrete groups known to be principally ergodic,
including all such groups that contain a finitely generated amenable subgroup that
is not virtually cyclic.

We will now describe how their ideas work in the case of I". We begin by describ-
ing two important properties of finite-index subgroups of I', namely, that they are
amenable and have only one end.

For an arbitrary discrete group A let

(Y(A,R) = {w ERY: lwy =) |ws| < oo},
5

(> (AR) = {w € R : ||wl|oo := sup |ws| < oo},
é

so that £°°(A, R) is the dual space to £}(A,R).
Fix K,L > 1,and put M = KL. Let A = Ay = (2%, y", 2M), the finite-index
subgroup of I" generated by %, y%, and 2.

Lemma 3.3. Let A = Agpa and suppose that {Tx: A € A} is an action of A by
continuous affine operators on (I, R). If C' is a weak™-compact, convex subset
of £°(T',R) such that T\(C) C C for every A € A, then there is a common fized
point b € C for all the T).

Proof. Put
Fn:{pr,qu,zTM:0<p<n, 0<qg<n, 0<r<n2}.

The condition on the powers of z is imposed so that any distortion caused by left
multiplication of F,, by a given element A € A is eventually small. More precisely,
for every A € A we have

IAE, A F,|

—0 asn— oo
| P ’

where A denotes symmetric difference and | - | denotes cardinality.
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Now fix by € C, and let b, Z T\(bo). Then b, € C because C is
| ”l AEF,
convex. Since C is weak*-compact, there is a subsequence by, converging weak* to
some b € C. Note that sup,cc ||¢[|cc < 00 by compactness of C. Then since each

Ty is continuous, we get that Ty(b,,) — Tp(b) for every 6 € A. Furthermore,

OF,, AF,,
M sup |||l = 0 as j — oc.

HTa(bnj) - bnj ||oo <
’ ’ |Fn| ceC

It follows that Ty(b) =b for all 6 € A. O

The essential point in the previous proof is that A is amenable, and that {F,}
forms a Fglner sequence.

We call a set A C A = Agpa almost invariant if |AX A A is finite for every
A € A. Clearly, if A is almost invariant, then so is AN for every ' € A.

Lemma 3.4. Let A C A = Agpy be an infinite almost invariant subset. Then
A\ A is finite.

Proof. Let S = {xK,m’K,yL,y*L,zM,z*M} be a set of generators for A. The
Cayley graph ¢4 of A with respect to S has as vertices the elements of A, and for
every vertex \ and s € S there is a directed edge from A to As. Let E be the union
of As A A over s € S, so F is finite. We can therefore enclose E in a ‘box’ of the
form B = {2 yM lM 2 |il,14], |k| < n}. Since A is infinite, choose an a € A\ B.
Then for every b € A\ B there is a finite directed path in ¢ from a to b that avoids
B, say with vertices a,asy,as182,...,a8182...5, = b, and by the definition of F
each of these is in A. Hence, A\ A C B and so is finite. [J

Second proof of Theorem 3.2, adapted from [39]. Suppose that h € ZT" with h+ZT'f
having a finite I'-orbit in ZI'/ZT'f. We will prove that h € ZT'f.

There are K, L > 1 such that (z% — 1)h € ZI'f and (y* — 1)h € ZI'f. Then
a BylgKy=L = KL also stabilizes h + ZI'f. Let M = KL. Then there are
g1, 92,93 € ZT such that (2% — 1)h = g1 f, (y* — 1)h = gof, and (2™ — 1)h = g3f.

Consider the finite-index subgroup A = Ak of T' as above. For every A € A
there is a ¢(A) € ZI" such that (A — 1)h = ¢(\) f, and this element is unique since
ZT has no zero-divisors. Then ¢: A — ZI is a cocycle, that is, it obeys ¢(AN) =
c¢(A) + Ace(N) for all A, N € A.

Consider ZI" as a subset of £*°(I',R). We claim that ¢ is a uniformly bounded
cocycle, that is, supyep [|¢(A)]|oo < 00. The reason for this is that we can calculate
the value of ¢(\) for arbitrary A using left shifts of the generators g; that are
sufficiently spread out to prevent large accumulations of coefficients. For example,
if p,q,r > 1, then applying the cocycle equation first for powers of 2, then powers
of y~, and then powers of 2™, we get that

c(aPBytlz My = gy + a¥g + - 4 2P DE g 4 oK gy 4 aPKylgy 4.

+ pry(qfl)LgQ + Ipqung + IpquL Mg N ‘,L,pquLZ(rfl)Mg:" (31)

Since the supports of the g; are finite, there is a uniform bound P < oo such that for
every v € I and every A € A, there are at most P summands in the expression (3.1)
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for ¢()\) whose support contains v. Hence, [|c(A)|loo < Psup;¢;<3 [|gillcc = B < 00,
establishing our claim.

Now let C be the closed, convex hull of {¢(A): A € A} in ¢°°(T',R), which is
weak*-compact since the ¢(\) are uniformly bounded. Consider the continuous
affine maps T): ¢*(',R) — ¢°(T',R) defined by Th(v) = A-v + ¢(\). Then
T\ o T = Thx by the cocycle property of ¢, and Th(c¢(N)) = ¢(AN), so that
T\(C) C Cforall A € A. By Lemma 3.3 there is a common fixed point v = (v,) € C
for the T, so that v — A-v = ¢(\) € ZT for all A € A. We write each vy, = w, +u,
with w, € Z and u, € [0,1). Then

Uy — Up-14 = Vy — Ur-14 + Wy —Wr-1, € (—=1,1) NZ = {0},

so that w also satisfies w — A - w = ¢(\), where now w € ¢*°(I',Z) has integer
coordinates. Replacing w by —w, we have found a w € ¢>°(I',Z) with |w|. < B
and A - w —w = c(A) for all A € A.

Next, we use Lemma 3.4 to show that we can replace w by an element of £>°(T, Z)
having finite support, and so being an element of ZI'. Fix vy € I'. For —-B <k < B
consider the ‘level set’ for the restriction of w to the right coset Ay: A, = {\ €
A:wy-1, = k}. We claim that for each v there is exactly one k for which A, j
is infinite. For suppose that A, is infinite. Let # € A. Since 6 - w — w = ¢(0)
has finite support, wp-15-1, = wy-1, for all but finitely many A € A. Hence,
|Ay k8 A Ay 1| < oo for every 6 € A. By Lemma 3.4, we see that A\ A, ; is finite.
Thus, for every v € I' we can adjust the value of w on the coset Ay so that the
restriction of w to A~y has finite support. Doing this for each of the finitely many
right cosets A~y results in a w with finite support on I', so that w € ZI'.

Thus, ¢(A) = (A — 1)w for every A € A. Since (A —1)h =c(A)f = (A —1Dwf, we
get that h =wf € ZI'f, as required.

Theorem 3.2 answers the (1 x 1)-case of the following natural question.

Problem 3.5. Describe or characterize those F € R**! for which ar is ergodic,
or, equivalently, those Noetherian R-modules M for which «; is ergodic. Is there
a finite algorithm that will decide whether or not a given ap is ergodic? Are
there easily checked sufficient conditions on F for ergodicity of ap?

Einsiedler and Rindler provided one answer to Problem 3.5, which involves the
notion of prime ideals in R. A two-sided ideal p in R is prime if whenever a and
b are two-sided ideals in R with ab C p, then either a C p or b C p. If N is
an R-submodule of an R-module M, then the annihilator anng(N) of N is defined
as {f € R: fn = 0foralln € N}, which is a two-sided ideal in R. A prime
ideal p is associated with M if there is a submodule N C M such that for every
non-zero submodule N’ C N we have anng(N’) = p. Every Noetherian R-module
has associated prime ideals, and there are only finitely many of them.

Call a prime ideal p of R ergodic if the subgroup {y € I': v — 1 € p} of T has
infinite index in I'. For instance, the ideal p in Example 3.7 is prime (being the
kernel of a ring homomorphism onto a commutative integral domain), but is not
ergodic. It is easy to verify that a prime ideal p is ergodic if and only if the action
aRyp is ergodic, and that the only ideal associated with R/p is p.
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Theorem 3.6 ([18], Theorem 3.3). Let M be a Noetherian R-module. Then oy
is ergodic if and only if every prime ideal associated with M is ergodic.

Example 3.7. Let p be the left ideal in R generated by x — 1 and y — 1. Then
z—1=(y—-2)za—1)+ 1 —-22)(y—1) €p,

and so the map ¢: R — Z defined by ¢(f) = f(1,1,1) is a well-defined surjective
ring homomorphism with kernel p. Thus, p is a prime ideal with R/p isomorphic
to Z. The dual T'-action is simply the identity map on T, which is non-ergodic.
Hence, p is a left ideal generated by two elements with ag/, non-ergodic, showing
that Theorem 3.2 does not extend to non-principal actions.

We remark that if we consider Z3 instead of I', then the characterization of
ergodic prime ideals in [60], Theorem 6.5 shows that their complex variety is finite,
and, in particular, they must have at least three generators by elementary dimension
theory.

A relatively explicit description of all prime ideals in R is given in [48].
Problem 3.8. Characterize the ergodic prime ideals in R.

An answer to this problem would reduce Problem 3.5 to computing the prime
ideals associated with a given Noetherian R-module. However, this appears to be
difficult, even for modules of the form R/Rf, although it follows from Theorem 3.2
that all prime ideals associated with R/Rf must be ergodic.

4. Mixing

Let A be a countable discrete group, and let M be a left ZA-module. Denote
by u Haar measure on X ;. The associated algebraic A-action ay is called mixing if
lims_ 0o p(ad, (E) N F) = pu(E)u(F) for every pair of measurable sets E, F' C Xy,
where 0 — oo refers to the one-point compactification of A. For m € M, the
stabilizer of m is the subgroup {§ € A: 6 -m = m}.

Proposition 4.1 ([60], Theorem 1.6). The algebraic A-action apy is mizing if and
only if the stabilizer of every non-zero m € M 1is finite. In the case A = T, this
is equivalent to requiring that for every mon-zero m € M the map v — v -m is
injective on I'.

Using this together with some of the ideas from the previous section, we can give
a simple criterion for g(z) € ZZ = Z[z¥] such that «, is mixing.

Proposition 4.2. Let g = g(z) € ZZ. Then the principal T'-action oy is mizing if
and only if g(z) has no roots that are roots of unity.

Proof. Suppose first that g(z) has a root that is a root of unity, so that g(z) has
a factor go(z) € ZZ dividing 2™ — 1 for some n > 1. Then h = g/gy ¢ ZT'g, but
(2" —1)h = [(2" — 1)/g0lg € ZI'g, so that ay4 is not mixing by Proposition 4.1.

Conversely, suppose that g has no root that is a root of unity. Recall that the
content c(h) of an element b = 37, . hy; (2)a%y’ is the greatest common divisor in ZZ
of the polynomials h;;(z). Then h € ZI'g if and only if g | c(h).
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If (zPy12" — 1)h € ZI'g with (p,q) # (0,0), then g divides c((zPy?z" — 1)h) =
c(h), showing that h € ZI'g. Similarly, if (2" —1)h € ZT'g, then g | (2" —1)c(h), and
by assumption g is relatively prime to 2" — 1. Hence, again g | c(h), and so h € ZI'g.
Then Proposition 4.1 shows that oy is mixing. [J

Using more elaborate algebra, Hayes found several sufficient conditions on f €
ZI" for ay to be mixing. To make the cyclotomic nature of these conditions clear,
recall that the nth cyclotomic polynomial ®,(u) is given by ®,(u) = [[(uv — w),
where the product is over all primitive nth roots of unity. Each ®,,(u) is irreducible
in Q[u], and u™ — 1 =[], ®a(u) is the irreducible factorization of u™ — 1 in Q[u].

Let ui,...,u, be r commuting variables. Then a generalized cyclotomic polyno-
mial in Z[uT,. .., uF] is one of the form @ (ul" ---u"") for some k > 1 and some
choice of the integers ny,...,n,, not all equal to 0.

There is a well-defined ring homomorphism 7: ZI' — Z[Z*,7F], with Z and 7
commuting variables, given by x — Z, y — 7, and z — 1. For f = Zij fij(z)xiyj €
7T, its image under 7 is f(Z,7) = Zij fi; ()T

Proposition 4.3 [31]. Each of the following conditions on f € ZT is sufficient for
ay to be mizing:

1) f € Z[z*, 2%] and f is not divisible by a generalized cyclotomic polynomial
mx and z;

2) f € Zly*,2%] and f is not divisible by a generalized cyclotomic polynomial
ny and z;

3) f=22 Jij(2)z'y? with the content c(f) not divisible by a cyclotomic poly-
nomial in z, and f(Z,7) not divisible by a generalized cyclotomic polynomial in T
and .

Example 4.4. (a) If f =1+ 2+ y, then oy is mixing by part 3).

(b) If f = 2+2z—2, then ay is mixing by part 1), yet f(Z,7) = Z—1 is cyclotomic,
showing that part 3) is not necessary.

(¢) A generalized cyclotomic polynomial in u; and ug always has a root both of
whose coordinates have absolute value 1. It follows that, for example, 4u; + 3us +
8ujug cannot be divisible by any generalized cyclotomic polynomial. Then part 3)
above implies that for every choice of non-zero integers p, ¢, r, the polynomial
f=(P+3)z+ (274 2)y + (2" + T)zy yields a mixing ay.

More generally, if >, ; bij u’lu; is not divisible by a generalized cyclotomic poly-
nomial, and p;;(z) € ZZ all satisfy p;;(1) = b;; and have no common root that is
a root of unity, then f = 3=, pij(2)2’y’ results in a mixing ay.

Problem 4.5. Does there exist a finite algorithm that decides, given f € ZI,
whether or not oy is mixing? More generally, is there such an algorithm that
decides mixing for T-actions of the form ay, where F' € ZI'**!?

There is another, simply stated, sufficient condition for ay to be mixing. Recall
that ¢!(I',R) is a Banach algebra under convolution, with identity element 1.

Proposition 4.6. If f € ZT is invertible in (' (T, R), then oy is mizing.
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Proof. If ay were not mixing, then there would be an h ¢ ZT'f and an infinite
subgroup A C T such that A\-h —h € ZT'f for all A € A, say \-h — h = ¢(\)f.
Let w € /1(T,R) be the inverse of f. Then A\-h-w — h-w = ¢(\) € ZI'. Letting
A —ooin A, we see that g = h-w € ZI'. Hence, h=h-w- f = gf € ZT'f, showing
that o is mixing. [

We will see in Theorem 5.1 that invertibility of f in £*(I',R) corresponds to an
important dynamical property of o.

5. Expansiveness

Let A be a countable discrete group and « be an algebraic A-action on a compact
Abelian group X. Then « is called expansive if there is a neighbourhood U of 0x
in X such that (N;cp @°(U) = {0x}. All groups X we consider are metrizable, so
let d be a metric on X compatible with its topology. By averaging d over X, we
may assume that d is translation-invariant. Then « is expansive provided there is
a k> 0 such that if d(a®(t),a’(u)) < & for all § € A, then t = u. Any such &
is a so-called expansive constant of o (with respect to the given metric d).

Expansiveness is an important and useful property, with many implications. It
is therefore crucial to know when algebraic actions are expansive. For principal
actions there is a simple criterion.

Theorem 5.1 ([17], Theorem 3.2). Let A be a countable discrete group. For f € ZA
the following are equivalent:

1) the principal algebraic action oy on Xy is expansive;

2) the principal algebraic action o« on Xy« is expansive;

3) f is invertible in (1(A,R);

4) the right convolution w — py(w) = w - f* is injective on {>°(A,R).

Before sketching the proof, we isolate a crucial property of /1(A,R) called direct
finiteness: if v,w € (*(A,R) with v-w = 1, then w-v = 1, where v - w denotes the
usual convolution product in /(A,R). This was originally proved by Kaplansky
[34], p. 122 using von Neumann algebra techniques. Later Montgomery [51] gave
a short proof using C*-algebra methods. A more self-contained argument using
only elementary ideas was given by Passman [55]. All these arguments use a key
feature of /1(A,R), that it has a faithful trace function tr: ¢1(A,R) — R given
by tr(w) = wi,. This function has the properties that it is linear, tr(1) = 1,
tr(v - w) = tr(w - v), and tr(v - v) > 0, with equality if and only if v = 0. The key
argument is that if e - e = e, then 0 < tr(e) < 1, and tr(e) = 1 implies that e = 1.
Ifv-w=1,thene=w-vsatisfiese-e = (w-v) - (w-v) =w-(v-w)-v=w-v=e,
and tr(w - v) = tr(v - w) = 1, hence w-v = 1.

Proof of Theorem 5.1. Let dr be the usual metric on T = R/Z defined by
dr(t + Z,u + Z) = min,eyz |t — u + n|. It is straightforward to check that we
may use the pseudometric di on Xy defined by di(t,u) = dr(ti,,u1,) to define
expansiveness (see [15], Proposition 2.3 for details).

First suppose that there is a w € £>°(A,R) such that ps(w) = w- f* = 0. Let
B: R — T be the usual projection map, and extend [ to £°°(A,R) coordinatewise.
For every € > 0 we have ps(ew) = 0, so that S(ew) € Xy. Since ||ew|oo = €]|w]|
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can be made arbitrarily small, it follows that o is not expansive. Conversely, if o ¢ is
not expansive, then there is a point ¢ € Xy with dr(ts,0) < (3| f*|l1)~* forall§ € A.
Pick t5 € [0,1) with B(t5) = ts for all § € A, and let t = (t5) € £*°(A,R). Then
ps(t) € €°(A,Z)), and ||ps(t)||eo < 1, hence ps(t) = 0. This shows that 1) < 4).

Now suppose that py is injective on ¢>°(A,R). Then pys- (¢*(A,R)) is dense in
(A,R) by the Hahn-Banach Theorem. Since the set of invertible elements
in /1(A,R) is open, there is a w € ¢}(A,R) with w - f* = 1. By direct finiteness,
f* is invertible in ¢!(A,R) with inverse w. Hence, f~! = (w*)~!. This shows
that 4) = 3), and the implication 3) = 4) is obvious. Since f is invertible if and
only if f* is invertible, 2) < 1). O

Let us call f € ZA expansive if ay is expansive. For the case A = Z, Wiener’s
theorem on invertibility in the convolution algebra ¢!(Z, C) shows that f(u) € Z[u*]
is expansive if and only if f does not vanishon S = {¢ € C: |¢| = 1}. The usual proof
of Wiener’s Theorem via Banach algebras is non-constructive since it uses Zorn’s
lemma to create maximal ideals. Cohen [12] has given a constructive treatment of
this and similar results. We are grateful to David Boyd for showing us a simple
algorithm for deciding expansiveness in this case.

Proposition 5.2. There is a finite algorithm, using only operations in Q[u], that
decides, given f(u) € Z[u¥], whether or not f is expansive.

Proof. We may assume that f(u) € Z[u] with f(0) # 0, say of degree d. We can
compute the greatest common divisor g(u) of f(u) and u?f(1/u) using only finitely
many operations in Q[u]. Observe that any root of f(u) on S must also be a root of
g(u). Let the degree of g be e. Then g(u) = ug(1/u), so that the coefficients of g(u)
are symmetric. If e is odd, then —1 is a root of g since all other possible roots come
in distinct pairs. If e is even, then it is simple to compute an h(u) € Q[u] such
that g(u) = u®/?h(u + 1/u). Any root of g on S corresponds to a root of h on
[-2,2]. We can then apply Sturm’s algorithm, which uses a finite sequence of
calculations in Q[u] and sign changes of rationals, to compute the number of roots
of hin [-2,2]. O

Decidability of expansiveness for other groups A, even just I', is a fascinating
open question.

Problem 5.3. Is there a finite algorithm that decides, given f € ZI', whether or
not f is expansive?

There is one type of polynomial in ZA that is easily seen to be expansive. Call an
f € ZA lopsided if there is a 6o € A such that [fs,| > > 55, | fs|. This terminology
is due to Purbhoo [57].

If f is lopsided with dominant coefficient f5,, then adjust f by multiplying
by +6, ! so that f; > > 541 1fs|. Then f = fi(1 —g), where [g|s < 1. We can

then invert f in ¢*(A,R) by a geometric series:

f_l:f—(1+g+g*g+---)€£1(A,R).

Thus, lopsided polynomials are expansive.

1
1
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The product of two lopsided polynomials need not be lopsided (expand (3 +
u+u~1)?). Surprisingly, if f € ZA is expansive, then there is always a g € ZA
such that fg is lopsided. This was first proved by Purbhoo [57] for A = Z9 using
a rather complicated induction from the case A = Z, but his methods also provided
quantitative information he needed to approximate algorithmically the complex
amoeba? of a Laurent polynomial in several variables. The following short proof is
due to Li.

Proposition 5.4. Let A be a countable discrete group and let f € ZA be expansive.
Then there is a g € ZA such that fg is lopsided.

Proof. Since f is expansive, by Theorem 5.1 there is a w € ¢*(A,R) such that
f-w = 1. There is an obvious extension of the definition of lopsidedness to ¢! (A, R).
Note that lopsidedness is an open condition in ¢'(A,R). First perturb w slightly
to a w’ having finite support, and then again slightly to a w” having finite support
and rational coordinates. This results in a w” € QA such that fw” is lopsided.
Choose an integer n so that ¢ = nw” € ZA. Then fg is lopsided. O

One consequence of the previous result is that if f € ZA is expansive, then
the coefficients of f~! must decay exponentially fast. Recall that if A is finitely
generated, then a choice of a finite symmetric generating set S induces the word
norm | - |s, where |§|s is the length of the shortest word in generators in S whose
product is §. Clearly, |61d2]s < |01]|s]d2|s. A different choice S’ for a symmetric
generating set gives an equivalent word norm | - |g: in the sense that there are two
constants ¢y, c2 > 0 such that ¢1]d|s < |d]sr < ¢o|d|g for all § € A.

Proposition 5.5. Let A be a finitely generated group, and fix a finite symmetric
generating set S. Suppose that f € ZA is invertible in (*(A,R). Then there are
constants C > 0 and 0 < r < 1 such that |(f~1)s| < Crl®ls for all § € A.

Proof. By the previous proposition, there is a g € ZA such that h = fg is lopsided.
We may assume that the dominant coefficient of h occurs at 1a, so that h =
q(1 —b), where ¢ € Z and b € QA has |||y = s < 1. Let F = supp(h) and
put 7 = max{|d|s: § € F}. Now h ™t = ¢ (1 +b+b2+---) and ||b*| < ||b]|F < s*
for all k& > 1. Furthermore, if (b™)s # 0, then |d|s < n7. Hence if |0|g > n7, then
(14+b+b%+---+b")s =0. Thus,

o -1
— — n n — q n
Bl = I 4B s <t Y B <
k=n+1

whenever |0|s > n7. This shows that (h=1)s < Crl®ls with » = s*/7 and suit-
able C > 0. Since f~! = gh™!, we obtain the required result with the same 7 and
a different C'. O

We remark that a different proof of this proposition, using functional analysis
and under stricter hypotheses on A, was given in [17], Proposition 4.7. If A = Z
and f(u) € Z[u*] is invertible in ¢!(Z,R), then f does not vanish on S. Then 1/f

2 Russian editor’s note: The amoeba of a complex polynomial is the image of its zero set
in (C*)™ under the map Log: (z1,...,2n) — (log|z1],...,log|zn|).
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is holomorphic in some annular region around S in C, and so the coefficients of its
Laurent expansion decay exponentially fast, giving a direct proof of the proposition
in this case.

Next we focus on the case A = I' and obstructions to invertibility coming from
representations of I'.

Let 22 be a complex Hilbert space, and let Z(.%) be the algebra of bounded
linear operators on J#. Denote by % () the group of unitary operators on J#.
An irreducible unitary representation of T' is a homomorphism 7: ' — % () for
some complex Hilbert space # such that there is no non-trivial closed subspace

of 4 invariant under all the operators m(y). Then 7 extends to an algebraic
homomorphism 7: ¢*(T',C) — B(#) by

m ( > fw) = ().

If there is a non-zero v € S with 7(f)v = 0, then clearly f cannot be invertible
in /*(I',R). The converse is also true.

Theorem 5.6. Let f € ZT'. Then f is not invertible in £*(T,R) if and only if there
is an irreducible unitary representation w: I' — U () on some complex Hilbert
space F€ and a non-zero vector v € F such that w(f)v = 0.

This result is stated in [18], Theorem 8.2, and a detailed proof is given in [24],
Theorem 3.2. A key element of the proof is that ¢!(T',C) is symmetric, that is,
1 + g*g is invertible for every g € ¢}(I',C), and, in particular, for every g € ZI.
There are examples of countable amenable groups whose group algebras are not
symmetric [32].

We remark that Theorem 5.6 remains valid when I' is replaced by any nilpotent
group, in particular by Z or Z%. In the latter cases all irreducible unitary represen-
tations are 1-dimensional, and are obtained by evaluation at a point in S%. This is
exactly the Wiener criterion for invertibility in ¢'(Z%).

The usefulness of Theorem 5.6 is at best limited, since I is not of Type I and so its
representation theory is murky. However, there is an extension of the Gelfand the-
ory, called Allan’s local principle, that detects invertibility in the non-commutative
Banach algebra ¢!(T",C). The use of this principle for algebraic actions was initi-
ated in [24]. In the case of I-actions this principle has an explicit and easily verified
form, which we now describe.

To simplify the notation, let B = ¢}(I',C) be the complex convolution Banach
algebra of T, and let C' = ¢}(Z,C) be its center. The maximal ideals of C' all have
the form me = {v =37° __v;27: v(¢) =0}, where ¢ € S. For v € C the quotient
norm of v +m¢ € C/m is easily seen to be |[v + m¢|lc/m. = [v(¢)]- Let be denote
the two-sided ideal in B generated by m¢, so that

be = {w = Zw”(z)x’yj € B:w;j(z) eme forall i, j e Z}.
0,J
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Then for w =73, ; w;;(2)z'y’ € B, the quotient norm of w + b € B/b is

o0

lw+b¢llBre, = Z |wi; (C)]-

1,j=—00

To give a concrete realization of B/b¢, we introduce variables U, V, subject
to the skew commutativity relation VU = (UV. Then the skew-commutative
convolution Banach algebra EE(U, V') consists of all sums Z'i()jzfoo c;;UVI with
cij € Cand 37, ; [e;5] < 0o, and with multiplication the usual convolution modified

by skew commutativity. Then the map B/b; — £;(U, V) given by

Zwij(z)xiyj + bg = Z’LU”(C)UlVJ
.7

5]

is an isometric isomorphism of complex Banach algebras. Under identification of
these algebras, the quotient map m.: B — B/b; = Eé(U , V) takes the concrete form

m(Zw”(Z)xiyj) = wi(QUVI.
ij v

In [24], §3 Allan’s local principle was introduced as a convenient device for
checking expansiveness of principal actions of I' and then applied to a number of
examples.

Theorem 5.7 (Allan’s local principle, [2]). An element w € £*(T',C) is invertible
if and only if m¢(w) is invertible in E%(U, V) for every ¢ € S.

Proof. In the notation introduced above, it is clear that if w is invertible in B, then
all its homomorphic images m¢(w) must also be invertible.

Conversely, assume that w € B is non-invertible but 7; (w) is invertible in ﬁé(U, V)
for every ( € S. The left ideal Bw is proper since w is not invertible, so let
b be a maximal left ideal in B containing Bw. It is easy to see that b N C must
be a maximal ideal in C, hence b N C' = m¢ for some ¢ € S. Then by C b. By
assumption, 7¢(w) = w + b¢ is invertible in B/b¢, and w € b, so that b = B, a
contradiction. [J

We now turn to some concrete examples where expansiveness can be analyzed
geometrically. But before doing so, let us introduce a quantity that we will use
extensively.

Definition 5.8. Let f(u) € Z[u*]. The logarithmic Mahler measure of f is defined
as

= /1 dg.
m(f) = [ 1og0)
The Mahler measure of f is defined as M(f) = exp(m(Jf)).

Suppose that f(u) = cpu™ + -+ 4 ¢, + ¢o with epco # 0, and factor f(u) over C
as ¢y H?zl(u — Aj). Then Jensen’s formula shows that m(f) has the alternative
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expression

m(f) =loglea| + Y log|Aj| =loglea| + D log™ |Al, (5.1)
IA;]>1 j=0

where log™ r = max{logr, 0} for 7 > 0 (cf. [49]).

Mahler’s motivation was to derive important inequalities in transcendence the-
ory. Using the fact that M(fg) = M(f)M(g), he showed that if f,g € C[u], then
|l fgllL = 2~ de8 f=dee 9| f||1||g||1, and that the constant is best possible.

Let us consider the case of an f € ZI' that is linear in y, so that f(z,y,2) =
h(z,z)y — g(z,z). We will find 1-dimensional o -invariant subspaces of ¢>°(I",C)
as follows. Let A = (z,z) be the subgroup of I" generated by z and z. To make
calculations in ¢°°(T",C) and ¢*°(A, C) more transparent, we will write elements as
formal sums w =3 pw(y)y and v =3\ 5 V(M)A

Fix (¢,¢) € S? and define

vec= Y, &¢makam e (A, Q). (5.2)

k,m=—o00

Observe that
pa(vec) = (kacm xkzm)x—l =& &P matam = Cuee
k,m k,m

and, similarly, p,(ve ¢) = (ve¢. Hence, the 1-dimensional subspace Cuvg ¢ is a com-
mon eigenspace for the operators p, and p,. It follows that p,(ve ¢) = ve,c ¢* (2, 2) =
q(&, Qe ¢ for every g € ZA.

Let {c,} be a sequence of complex constants to be determined, and consider the
point w = Y07 ¢, vecy". With use of the relations y*q(z, z) = q(zz*, 2)y* for
all k € Z and all ¢ € ZA, the condition pf(w) = w - f* = 0 becomes

0—< > Cn”f»cy”> (y~'h*(2,2) = 9" (x,2))
= Z {Cn Ve ¢ h*($27l_172)yn_1 — G e g*(xzn7z)yn}
= > {earth(€0",€) — cng(€C™, ) bue c y™

This calculation shows that ps(w) = 0 if and only if the ¢, satisfy

cnt1h(EC™, () = cng(€C™, () for alln € Z. (5.3)

Since ||w||oo = sup,ez |cn|, one way to create non-expansive elements f of this form
is to find conditions on g and h that guarantee the existence of a non-zero bounded
solution {¢,} of (5.3) for some choice of ¢ and (.
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Suppose that both g and h do not vanish on S?. Fix a non-zero value of ¢y. Then
by (5.3), the other values of ¢,, are determined by

11 h(ET.0) forn>1,
O B i (54)
.’ forn < —
Cog[h@cﬂ, | e
Let
oc(6) = Top| 25 5.5

and consider the map 1¢(n,§): Z x R — R given by

n—1 )

doocedd)  forn>1,
3=0

Pe(n, &) = 07 forn =0, (5.6)

3 0c(€C) form< 1.
j=1

Then 1) satisfies the cocycle equation

wC(m +n, 5) = wC(m’ g) + wC(nv me)

for all m,n € Z and £ € S. Furthermore, there is a non-zero bounded solution {c,, }
of (5.3) if and only if {1)¢(n,§): — oo < n < oo} is bounded above.

Suppose that ¢ € S is irrational, and that there is a £ € S for which (5.3) has
a non-zero bounded solution. Observe that ¢, is continuous on S? since neither g
nor h vanish there by assumption. By the ergodic theorem,

n—1

[ oc@rde = tim L3 octe¢) = tim Le(n.6) <o,
=0
— [[6c(yde = lim — 3" clec) = lim Lie(-n.€) <0
=1

Thus, [¢c(£)dé = m(g(-,¢)) — m(h(-,¢)) = 0. There is a similar necessary
condition when ( is rational, but here the integral is replaced by a finite sum over
a coset of the finite orbit of ( in S. It turns out that these necessary conditions are
also sufficient.

Theorem 5.9. Let f(x,y,z) = h(z,2)y — g(x,2) € ZT', and suppose that both g
and h do not vanish anywhere on S*. Let ¢¢(€) = log|g(&,¢)/h(€,C)|. Then ay is
expansive if and only if

1) fS ¢ () d€ # O for every irrational € S, and

2) Z;L:_ol B¢ (EC7) # 0 for every nth root of unity ¢ € S and every £ € S.
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Proof. Suppose first that ay is non-expansive. By Theorem 5.1, the I'-invariant
subspace K = {w € (>*(I',C): ps(w) = 0} is non-trivial. By restricting the
T-action on K to the commutative subgroup A, we can apply the argument in
[60], Lemma 6.8 to find a 1-dimensional A-invariant subspace W C K. In other
words, there are a non-zero w € K and points £, € S such that p,(w) = w
and p,(w) = Cw. It follows from this and the above discussion that w must have
the form w = Y07 ¢, ve,cy™ with the ¢, € C given by (5.3) and with {c,}
a bounded sequence. If ¢ is an nth root of unity, then clearly Z;Z()l ¢<(f<j )=0
by boundedness of the c¢,,, while if ( is irrational, then the discussion above shows
that [; ¢¢(€) dE = 0.

For the converse, suppose first that ¢ is rational, say (¥ = 1. If there is
a € € S with Zf;& $¢(€¢7) = 0, then (5.4) and (5.5) show that there is a bounded
sequence {c, }, in this case even periodic with period k, such that w = )" ¢, ve c Y™ €
£2°(T", C) with p¢(w) = 0, showing that a; is non-expansive.

Finally, suppose that ( is irrational and fs ¢¢(§) d§ = 0. If there were a contin-
uous coboundary b on S such that ¢¢(§) = b(£¢) — b(§), then the cocycle (-, &)
would be bounded for every value of £, and, as before, this means we can form
a non-zero point w € ¢>°(I',C) with ps(w) = 0, so ay is non-expansive. Thus,
suppose that no such coboundary exists. Let Y = S x R, and define a skew product
transformation S: Y — Y by S(&,7) = (£, 7+ ¢¢(§)). Since ¢¢ is not a cobound-
ary, but [ ¢¢(€) d§ = 0, the homeomorphism S is topologically transitive (see [27]
or [4], Theorems 1 and 2). By [6], pp. 38-39, there exists a point { € S such
that the entire S orbit of (£,0) has its second coordinate bounded above. Since
S™(€,0) = (£C™, ¢ (n, &), it follows that for this choice of €, the sequence {c, } given
by (5.4) and (5.5) is also bounded. Then for w =) 7 _ ¢, vecy™ € (°(T,C) we
have py(w) = 0, and so oy is non-expansive. [

Remark 5.10. With the assumptions of Theorem 5.9 that neither g nor h van-
ish on S?, the functions m(g(-,¢)) and m(h(-,¢)) are both continuous functions
of ¢. Hence, the conditions 1) and 2) in Theorem 5.9 combine to say that the
graphs of these functions never cross (for rational ¢ use the Mean Value Theorem).
In particular, if h(z,z) = 1, then since me(g(~,C)) d¢ = m(g) > 0, the condi-
tion for expansiveness of f(x,y,z) = y—g(z, z) becomes simply that m (g( -, ()) >0
for all C.

Example 5.11. The polynomial f(z,y,z) = 3+ 2 + y + z, although not lopsided,
was shown to be expansive in [18], Example 7.4. In [24], Example 3.6, four different
ways to verify its expansiveness are given: 1) using irreducible unitary representa-
tions, 2) direct computation of its inverse in /! (T, R), 3) using Allan’s local principle,
and 4) using the geometric argument in Theorem 5.9.

Many more examples illustrating various aspects of expansiveness (or its lack)
for polynomials in ZI" are contained in [24].

Example 5.12 ([24], Example 5.11). Let f(z,y,2) =z +y+2z+2=y—g(z,2) €
ZT, where g(x,z) = —x — z — 2. Since g(—1,—1) = 0, g does not quite satisfy the
hypotheses of Theorem 5.9. However, we can directly use the violation of 2) there
to show that ay is non-expansive.
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Let (o = —1. We want to find £ € S such that |g(§, —1)g(—&,—1)| = 1. This
amounts to solving the equation |¢2 — 1| = 1, which has the four solutions +e*7%/6.
Let & = €™/ and consider the point vg, _; as defined in (5.2). Then the coeffi-
cients ¢, of the point > 7 CnUgy,—1Y" € ker py satisfy (5.3), and are hence alter-

nately multiplied by g(&, —1) and by g(—&, —1), where [g(&, —1)| = V2 — V3 =
0.51764 and |g(—&o, —1)| = 1/|g(€0, —1)| 2 1.93185. Thus, {c, }°°___ is bounded,
and hence o is non-expansive.

Note that here m(g(-,{)) = log|¢ + 2|, which vanishes only at ( = —1. Hence,
for all irrational ¢, condition 1) of Theorem 5.9 is satisfied. It is an easy exercise
to show that if ¢ # —1 is rational, then condition 2) is also satisfied. So here the
only values of (&,¢) leading to a bounded solution {c,} of (5.3) are (Fe*™/6 —1).
This example appears as Example 10.6 in [18], but was incorrectly asserted there
to be expansive.

— 00

Example 5.13. Let f(z,y,2) = y*> — a2y —1 € ZI. For (£,¢) € S? let ve¢ be
defined by (5.2), and let w = Y">° ¢, ve cy™. Although f is now quadratic in y,

we can still calculate ps(w) as before, finding that ps(w) = 0 if and only if
Cnyo =&C"cpy1 + ¢, foralln e Z. (5.7)

Thus, we need conditions on (&, ¢) for which (5.7) has a bounded solution.
For n > 1 put

6= ) o] 1 eoe] |3 &) (5.9

Then the recurrence relation (5.7) shows that

An(&,0) {?j = [ Cn } foralln > 1,

CnJrl

and there is a similar formula for n < —1.

We are therefore reduced to finding pairs (£,¢) such that the matrix-valued
cocycle {A,(£,¢)} is bounded. The easiest place to look is the case ¢ = 1, since
An(€,1) = A(€,1)". Now A;(&,1) has eigenvalues on S only if the roots of u? —
&u — 1 = 0 are there. This happens exactly when £ = +i. Hence if we define ¢, by

{ “n ] = {O 1] [O] for all n € Z,
Cn+1 1 1

then w =77 cni® aFynzm € 1°°(T,C) Nker(py), so ay is non-expansive.
For some values of (£, () the growth rate of A, (&, () can be strictly positive, for

example (1,1). However, as we will see later (see (9.7)), the growth rate of A, (¢, ()

as n — oo is zero for almost every (£,() € S?, although this is not at all obvious.

If g or h are allowed to vanish on S, then there is a completely different source
of non-expansive behavior.
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Example 5.14. Let f(z,y,z) = h(z,2)y — g(x, z) € ZT', and suppose that g(z, z)
and h(zz~!, z) have a common zero (£, ¢) € S%. Consider v¢ ¢ as a point in £>°(T", C).
Then

-1

pr(vec) = vec- (Y h*(x,2) = g (2,2)) = ve e - (W (w27t 2)y~" = g7 (, 2))

=h(EC Quec -yt = 9(&, Quec =0,

so that p; is not expansive.

There is a simple geometric method to create examples in this situation. Start
with two polynomials g(x,z) and hgo(z,2) whose unitary varieties in S? do not
intersect (cf. the definition on p. 683), but which have the property that the unitary
variety of the skewed polynomial hg(xz™,z) intersects that of g for sufficiently
large m. An example of this form was described in [25] (Example 8.5), which also
contains other results about expansiveness in cases when at least one unitary variety
is non-empty. However, this analysis leaves open one very interesting case. The
simplest version of this question is the following.

Problem 5.15. Let g(z,2) € Z[z*, 2%], and suppose that there is a ¢ € S for
which m(g(-,¢)) = 0 and such that g(£,¢) vanishes for at least one value of £ € S.
Is there a value of £ for which the partial sums Z;.Lzo log |g(£¢7,¢)| are bounded
above for all n?

Fraczek and Lemariczyk showed in [20] that these sums are unbounded for almost
every £ € S. The argument of Besicovitch [6] to prove the existence of bounded
sums makes essential use of continuity, and does not apply in this case where there
are logarithmic singularities.

Remark 5.16. By invoking some deep results in diophantine approximation theory,
we can show that the second alternative in the last paragraph of the proof of
Theorem 5.9 never occurs. For we claim that if fs ¢c(€)d€ = 0, then ¢ must be
an algebraic number in S. Assuming this for the moment, a result of Gelfond [23]
then shows that for every € > 0 there is a C' > 0 such that |[(™ — 1| > Ce "¢ for
every n > 1. Since ¢¢(§) is smooth, its Fourier coefficients @(n) decay rapidly as
|n| — oo, and therefore the sequence b,, = &Z(n)/(ﬁ" — 1) for n # 0 also decays
rapidly, so that the formal solution b(§) = Y7 _b,&" of the equation ¢¢ (&) =
b(&C) — b(€) is continuous.
To justify our assertion, we write

n

9(z,¢) = A(Q) H(x = (¢) and h(z,¢) = B(Q) [[ (= — m(Q)),

k=1

where A(z) and B(z) are Laurent polynomials with integer coefficients, and the A;
and py, are algebraic functions. The condition fs ¢¢(€) d€ = 0 becomes, via Jensen’s
formula,

a0 TI | =[50 T we)]
X (Q)I>1 [k (C)1>1

which is an algebraic equation in (, so ( is algebraic.
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From this and the preceding proof, under our assumptions that neither g nor h
vanish anywhere on S?, we conclude that if fS ¢¢(€) d€ =0 and ¢ is irrational, then
every choice of ¢ will yield a non-zero point w = Y ¢, ve cy™ € (T, C) with
ps(w) = 0.

This idea was observed independently by Evgeny Verbitskiy (oral communica-
tion).

To illustrate some of the preceding ideas, we provide an informative example.
This was chosen so that the diophantine estimates mentioned in Remark 5.16 can
be given an elementary and self-contained proof, rather than appealing to difficult
general diophantine results. In addition, the constants in our analysis are effective
enough to rule out non-expansive behavior at all rational (. One consequence is
that for this algebraic I'-action, non-expansiveness cannot be detected by looking
at only finite-dimensional representations of IT".

Example 5.17. Let
g(x,2) = a(x)c(z), where a(z) =2% —x —1and ¢(2) = 22 + 22 + 1.

It is easy to check that neither a nor ¢ vanishes on S, so that g does not vanish
anywhere on S2. Also, a(z) has roots 7 = (1++/5)/2and 0 = (1-v5)/2 = —7 L.

Consider f(z,y,z) = y — g(z,2), so that here h(z,z) = 1. Then ¢.(&) =
log |g(&,¢)| = logla(§)] + log|c(¢)]. Define 9¢(n,€) as in (5.6), and say that
(&,¢) € S? is non-expansive for g if the sequence {t¢(n,&): n € Z} is bounded.

We claim that there are eight values (1,...,(s € S which are algebraically con-
jugate algebraic integers of degree 48 such that the non-expansive points for g are
exactly those of the form (&, (), where £ is any element of S and 1 < k < 8.

We start with two simple results.

Lemma 5.18. Suppose that { € S is irrational, and that there are constants C > 0
and 0 < r < 1 such that |(™ — 1| = Cr™ for alln > 1. If k € C with |k| < r, then
the function £ — log |1 — &k| on S is a continuous coboundary for ¢, that is, there
is a continuous function b: S — R such that log |1 — &k| = b(£C) — b(E).

Proof. Since |{k| < 1, the Taylor series for log(1l — £k) converges, and

log(l —¢k) = i

Let B(¢) = >°07  b,&™. Then B(&C) — B(€) = log(l — &) provided that b, =
—k"/[(¢"—1)n] for all n > 1. The assumption on ¢ implies that |b,| < C~ (|x|/r)",
so that the series for B converges uniformly on S. Then b(§) = Re{B(&)} gives the
required coboundary. [

nn

Lemma 5.19. Let p(u) € Z[u] be monic and irreducible. Suppose that p has
a root ¢ € S that is irrational. Then there is a constant C > 0 such that

" =1 = CM(p)™2  for alln > 1, (5.9)

where M(p) > 1 is the Mahler measure of p.
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Proof. We factor p over C as
p(u) = (uw—u—O) [J(u—2x),
j=1

where ( is the complex conjugate of . The polynomial

T

P (w) = (u—=¢")(u—¢") [Tw—= A7)

Jj=1

has integer coefficients, and p(™ (1) # 0, hence |p™ (1)| > 1. Then using the trivial
estimates that |A\" — 1] < 2if [A| < 1 and |A™ — 1] < (1 — 1/|AD|A"] if [A] > 1, we
get that

1< p™ ) =1¢" =" =[N =1 <ier =12 20 T A7 -1

Jj=1 [Xj]>1
< |<"—1|2-27'{ 11 (1—;)}M<p)".

[Xj1>1 Al

Hence, (5.9) is valid with

1\ 12
__ o—-1/2
C =2 H (1—|Aj|) . O

‘)\j‘>1

Recall that a(z) = (z — 7)(x — 0), so that m(a) = log7. By Theorem 5.9, we
need to find just those ¢ € S for which

0= / log |9(£,¢)| de = / (log|a(€)] + log |e(¢)]) dé = log 7 + log |¢(O)],
S S

that is, we must solve the equation |¢(¢)| = 77!. Any such solution ¢ € S would
also satisfy ¢(2)c(1/z) = 772, or, equivalently, satisfy

F(z) = 22 (c(z)c(z‘l) — 7_2) € Q(7)[z]-

Here F'(z) has degree 24, and has eight roots (1,...,(s € S. To show that these are
algebraic integers, multiply F'(z) by its Galois conjugate over Q(7), obtaining the
polynomial

G(z) = 28 42296 4 o4 4 0,38 4 5,36 4 5,80 4 9,82 4 28 4 5,26
+ 7224 45222 4 220 1 2210 4 521 4 5212 1 0210 4 24 4 922 41,
whose irreducibility is confirmed by Mathematica. Hence, the (; are conjugate
algebraic integers of degree 48, as claimed.

Outside the unit circle G has 10 roots, whose product is M(G) 22 1.90296. Then
M(G) = 1.37948 < 7, which plays a crucial role in dealing with rational (.



Survey of Heisenberg actions 679

By Theorem 5.1, the only irrational { we need to consider are the eight num-
bers (5. By Lemma 5.19, there is a constant C' > 0 such that |} — 1] > Cr™,
where 7 = M(G)™*/2 < 1. Since 77! = |o| < 7, by Lemma 5.18 we can find
continuous coboundaries b; and by such that

log |1 — 771 = b1(£¢k) —b1(€) and  log|¢ — of = ba(£Ck) — ba(€).

Hence,

e, (€) = log|(€ = 7)(€ — 0)e(Gr)| = log |1 — 77 ¢| +log € — o

is also a coboundary. Thus, (&, (k) is non-expansive for every £ € S. This is an
example of the algebraic phenomenon discussed in Remark 5.16.

To complete our analysis, we turn to the rational case, say ( = w, a primitive nth
root, of unity. The idea of the following argument is to show that there is a number
Ny large enough such that for all n > Ny the variation of the n-periodic function
H;l;ol a(éw?) is small compared to |c(w)|. The estimates are sharp enough to obtain
the bound Ny = 143, and the remaining cases with n < 143 can be checked by hand.

First observe that

H{a e = I (e H 1w (€’ — o)

3=0
= (=M —rM (A - o).
Since |log |1 — || < 2|| for all k € C with |k < 771, it follows that
n—1
log H a7 | <477 (5.10)
j=0

for all £ € S and all n > 1. Recalling that ¢(¢;x) = 77!, we obtain

n—1 n-1 .
log H a(gwj)c(w)‘ = log H a(ﬁwj)q—_l I 10g‘ {C(w) ] .
=0 =0 c(Ck)
Thus, if
[nlog|c(w)r|| > 577", (5.11)

then we must have Z;L:_Ol b¢, (Ew?) # 0 for all € € S.

To obtain a reasonable bound for Ny so that (5.11) holds for all n > Ny, we
need to make a more careful estimate for the polynomial G(z) than in the proof
of Lemma 5.19. Here G(z) has ten roots Aq, ..., Ao outside the unit disk. Thus,
besides these and ¢ and ¢, there are 36 roots of G’ on or inside the unit circle. The
estimate in the proof of Lemma 5.19 can be refined as follows:

10

10
L<IGE =122 [T =1 =g =117 -2°M(e)" T ]
j=1

j=1

1
1-—|.
>\j
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It is easy to check that H;il |1 — A;"| has a maximum of about 37.94 at n = 6.

Hence,
1

218\/4T0

Since (f =1 = (P —w" = (G — W) (" + 2w+ +w' 1Y), it follows that
G — w| = ¢ — 1.

The verification of (5.11) breaks into two cases, depending on whether or not
w is close to some (. Let ¢ = 0.01. It is an exercise in calculus to show that
if |w— (k| > eo for every k, then [log|c(w)7|| > eo, while if [e*™* — (;| < &o for
some k, then the derivative of log |c(e?™**)7| has absolute value > 1. A glance at
Fig. 1 should make clear the meaning of these statements.

Ik — 1] > M(G)™™/2 foralln>1.

0.8 1.0

Figure 1. Graph of log |c(e?™*)|.

™ which is true for

In the first case, the inequality (5.11) is satisfied if neg > 57~
alln > 8.
In the second case, using the lower bound on the absolute value of the derivative,

we have

|log [e(w)7|| = [log [e(w)]| —log[e(Cr)|

1/n
218,/40
Since M(G)'/? < 7, the last term is eventually greater than 57", and in fact this

holds for all n > 143. One can then check by hand that (5.11) holds for all n < 143,
completing our analysis of this example.

1 —-n
> fw =Gl > —I¢F ~ 1 > M(G) 7.

—-n

It is sometimes useful to make a change of variables in order to transform a poly-
nomial into a form that is easier to analyze (see for example [44], (3)—(6)). Let A
be a countable discrete group, and let aut(A) denote the group of automorphisms
of A. If & € aut(A), then ¢ will act on various objects associated with A. For

example, if f =35 fs6 € ZA, then &f = >, f5P(5), and so (fg) = ®(f)P(9)
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and ®(f*) = ®(f)*. Analogous formulae hold for T4, ¢*(A,R), and £>°(A,R). If
« is an action of A, then there is a new A-action a® defined by (a®)? = a®(®),

Lemma 5.20. Let ® € aut(A) and f € ZA. Then ® induces a continuous group
isomorphism ®: X — Xoy intertwining the A-actions ay and oz}), so that (X, ay)
and (Xq>f,oz?) are topologically conjugate A-actions.

Proof. If t € T?, then
teX;et- ff=00=0@f")=21) 2(f)" & 2(t) € Xay,

so that ® induces the required isomorphism. Since ®(J - t) = ®(J) - ¢, we see that
® intertwines ay and a‘]lf. (]

Remark 5.21. It is important to emphasize what Lemma 5.20 does not say. Though
oz}? and ag ¢ are both A-actions on Xy, there is no obvious relation between them,

~

even if A is commutative. For example, if A = Z = (u), f(u) = u? —u — 1,

1 -1
on T2, while (Xqu,a?) is conjugate to the Z-action of A=! on T?. But A and
A~! do not even have the same eigenvalues, so cannot give algebraically conjugate
Z-actions.

1
and ®(u) = u™!, then (Xof, asys) is conjugate to the Z-action of A = [0 }

However, certain dynamical properties are clearly shared between oy and asy,
for example ergodicity, mixing, and expansiveness.

Automorphisms of I" have an explicit description.

Lemma 5.22. Fvery automorphism of I is uniquely determined by integers a, b,
a, b r c,d s

¢, d, r, and s with ad —bc = £1, and is given by ®(x) = x%y°2", O(y) = x°y*2*,
and ®(z) = z2d-be,

Proof. Clearly, ® induces an automorphism of I'/Z =2 Z2, hence ad — bc = 1. The
condition ®(yx) = ®(xyz) shows that ®(z) = 2297, These necessary conditions
are easily checked to also be sufficient. [J

An analysis of expansiveness for non-principal actions has been carried out by
Chung and Li [11]. Let F € ZT'*** be a square matrix over ZI'. Then ZI'* /ZT'*F
is a left ZI'-module whose dual gives an algebraic action ap on Xp. An argument
similar to the proof of the implication 3) = 1) in Theorem 5.1 shows that if F' has
an inverse in ¢1(T, R)ka, then ap is expansive on Xp. The converse is also true,
and leads to a description of all expansive I'-actions.

Theorem 5.23 ([11], Theorem 3.1). Let F € ZT*** and let ar be the associated
algebraic T-action on Xp. Then ap is expansive if and only if F is invertible
in 01(T,R)**k . Moreover, every expansive I'-action is isomorphic to the restriction
of such an ap to a closed ap-invariant subgroup of Xp.
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Example 5.24. Let F = B ;

tions for the inverse matrix, one arrives at

} € ZI'?*2, Simply by formally solving the equa-

o [20—=2y)™t —2(d—yx)!
g 1_{y(4xy)1 2(4 —ya)”" |

where the inverses appearing in the entries are all in £!(T', R) by lopsidedness.

Obviously, an algorithm for invertibility of square matrices would immediately
answer Problem 5.3. But if the answer to the latter is affirmative, would this
provide an algorithm to decide invertibility of square matrices?

Problem 5.25. Suppose that there is an algorithm which decides whether or not
an element in ZI" has an inverse in £*(I', R). Is there then an algorithm that decides,
given F' € ZI'**k whether or not F has an inverse with entries in £*(T,R)?

If « is an expansive algebraic A-action on X, and Y is a closed a-invariant
subgroup, then clearly the restriction of « to Y is also expansive. However, the
question of whether the quotient action ax/y on X/Y is expansive is much more
difficult. When A = Z9, expansiveness of the quotient is always true (|59], Theo-
rem 3.11), but the proof uses commutative algebra and is not dynamical. Chung
and Li conjecture [11] that quotients of expansive actions are always expansive for
nilpotent groups A. Even for the Heisenberg group this is not known.

Problem 5.26. If « is an expansive action of I' on a compact Abelian group X,
and if Y is a closed a-invariant subgroup of X, then must the quotient action of «
on X/Y be expansive?

6. Homoclinic points

Let A be a countable discrete group and « an algebraic A-action on a compact
Abelian group X. An element ¢ € X is called homoclinic for «, or simply homo-
clinic, if a®(t) — Ox as § — oo. The set of homoclinic points forms a subgroup
of X called the homoclinic group of a. The established notation in the literature
for this group is A, (X). It will always be clear from the context (and a slight font
change) what A (or A) refers to.

Homoclinic points are an important technical device for localizing the behavior
of points in the group. For example, they are used to construct periodic points, to
prove a strong orbit tracing property called specification, and to estimate entropy.
They are also a natural starting point for constructing symbolic covers of algebraic
actions.

For A = Z%, many properties of homoclinic groups were studied in detail in [41],
especially for principal actions. Let us briefly describe some of the main results
there, with a view to extensions to I'.

For f € 774 = Z[uli, e ,u:ﬂ we define the complex variety of f to be

V(f) = {(z1,..,2a) € (C)*: f(z1,...,24) = 0},
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where C* = C\ {0}, and also the unitary variety of f to be

u(f) = {(zl,...,zd) eV(f): |z == |z :1}.

By Theorem 5.1 and Wiener’s theorem, o is then expansive if and only if U(f) = @.
In this case, let w® = (f*)~! € }(Z%). As before, let the map 3: £>°(A,R) — T4
be given by (fw)s = ws (mod 1), which clearly commutes with the left A-actions.
Put t* = B(w®). Since ps(t*) = Bpr(w?)) = Blw - f*) = (1) = 0, we see
that the point ¢* is in Xy and is also homoclinic. Furthermore, t* is fundamental,
in the sense that every homoclinic point is a finite integral combination of translates
of t& (cf. [41], Lemma 4.5). In this case all homoclinic points decay rapidly enough
to have summable coordinates.

In order to describe homoclinic points of principal A-actions oy, we first ‘lin-
earize’ Xy as follows. Put

Wy = B7(Xy) = {w e £°(A,R): pp(w) € £°(A,Z)}.

Suppose now that f € ZA is expansive, and deﬁne wb = (f*)7t € I*(AR).

Then py is invertible on (*°(A,R), and W, = p; '(¢=*(A,Z))), where pfl(u) =
u - w? for every u € £°(A,Z).
Proposition 6.1 ([17], Propositions 4.2 and 4.3). Let A be a countable discrete
group, and let f € ZA be expansive, so that f is invertible in (*(A,R). Put w® =
(f*)~* and let m: (>°(A,Z) — Xy be defined as w(u) = [(u - w?), where 3 is
reduction of coordinates (mod 1). Then:

1) m: (A, Z) — Xy is surjective, and in fact the restriction of w to the set of

those u with ||u]|eo < ||f]]1 is also surjective;

2) kerm = py (K‘X’(A,Z));

) ™ commutes with the relevant left A-actions; and
4) m is continuous in the weak™ topology on closed, bounded subsets of {°(A,7Z).

Proof. Suppose that ¢ € Xy. There is a unique liftjfv € (>*(A,R) with B(t) =
and t5 € [0,1) for all § € A. Then B(ps(t)) = ps(B(t)) = ps(t) = 0 in Xy, hence
pr(t) € €°(A,Z), and in fact ||pf(t)]|oo < || f|l1- Furthermore,

w(ps(B) = B(E £ w®) =p(E- f*-(f)7") =t.
This proves 1), and the remaining parts are routine verifications. [

If f € ZA is expansive, then let t* = S(w?) and call t* the fundamental homo-
clinic point of ay. This name is justified by the following.

Proposition 6.2. Let A be a countable discrete group, and let f € ZA be expan-
sie. Put w® = (f*)7' € ('(AR) and t* = B(w*) € Ay, (Xy). Then every
element of Ay, (Xy) is a finite integral combination of left translates of t*.

Proof. Suppose that t € A, (Xy), and lift ¢ to an element t € £~°(A,R) as in the
proof of Proposition 6.1. Then p(t) € £*(A,Z), and since t; — 0 as § — oo,

the coordinates of p(t) must vanish outside a finite subset of A, that is, ps (t) =
g € ZA. Then t = 7(ps(t)) = 7(g) = B(g- w*) = g - t* has the required form. [J
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Next we show that expansive principal actions have a very useful orbit tracing
property called specification.

Proposition 6.3 ([17], Proposition 4.4). Let A be a countable discrete group, and
let f € ZA be expansive. Then for every e > 0 there is a finite subset K. of A
such that if Fy and Fy are arbitrary subsets of A with K.Fy N K.Fy = & and if t()
and t@ are arbitrary points in Xy, then there is a t € Xy such that dr(ts, t((si)) <e
for every d € F;,i=1,2.

Sketch of proof. Let € > 0. The set K. is chosen so that } s |wg]| < e/[/f]1-
Lift each ¢t to V) and then truncate each p;(£)) to a u() having finite support
in K.F;. It is then easy to verify that t = 7(ps(uV)) + ps(u(?)) has the required
properties (see [17], Proposition 4.4 for details).

A point t € Xy with Y 5.5 dr(ts,0) < oo is called summable. Let Ay, (Xy)
denote the group of all summable homoclinic points for acy. Summability is crucial
in using homoclinic points for dynamical purposes.

Example 6.4. Let f(ui,up) =3 —uy —uy’ —uy —uy ' € Z[ui, uf]. It is shown
in [41], Example 7.3 that A, (X}) is uncountable (indeed, the Fourier series of every
smooth density on U(f) decays to 0 at infinity, and so gives a homoclinic point),
but AL ;(Xy) = {0}. Despite their large number, the non-summable homoclinic
points are essentially useless here.

Summable homoclinic points may still exist for non-expansive actions. For exam-
ple, consider f(u1,u2) = 2 — u; — ug. The formal inverse w of f* via geometric
series is well-defined and has coordinates decaying to 0 at infinity, so that S(w)
is homoclinic, but the decay is so slow that w is not summable (see [41], Exam-
ple 7.2). Define a function F: T? — C by putting F(s1,s) = f*(e271 e27is2),
Then 1/F is integrable on T?, and w is just the Fourier transform of 1/F. Now
1/F has a singularity at (0,0), and we can try to cancel this by multiplying it by
a sufficiently high power N of another polynomial G(s1,s2) = g(e27%1, e?7%52) that
also vanishes at (0,0) so that GV /F has an absolutely convergent Fourier series,
resulting in a summable homoclinic point gV - w = ¢~ /f*. For this example, tak-
ing g(uy,u2) = ug — 1, we see from the detailed analysis in [42], §5 that N = 3
is the smallest power such that GV /F has an absolutely convergent Fourier series,
providing a summable homoclinic point for aj.

This ‘multiplier method’ can be generalized to all f € Z[uf, e ,ufit] provided
that the dimension of U(f) C S? is at most d — 2. More precisely, with this
condition there is another polynomial g € Z[uli, e ,ui], not a multiple of f, such

that U(f) C U(g). The corresponding quotient GV /F has an absolutely convergent
Fourier series for sufficiently large N [43], and hence oy has summable homoclinic
points. However, if dim U(f) = d — 1, then this method fails, and in fact there are
no non-zero summable homoclinic points ([43], Theorem 3.2).

Let us turn to a consideration of homoclinic points for principal actions of T
If f € ZT" is expansive, then we have already seen in Proposition 6.2 how to describe
Aa;(Xy), and that this group agrees with Aj (X).
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Consider f(x,y,2) =2—x —y € ZI. If w = ¢*™/3, then f is in the kernel of the
algebra homomorphism ¢!(I',C) — C given by = + w, y — w?, and 2z — 1. Hence,
f is not expansive.

However, it is shown in [26] that the formal inverse of f can be smoothed by using
the multiplier (z — 1)? to create a summable homoclinic point for as. The proof
uses highly non-trivial combinatorial arguments, starting with the non-commutative
expansion

n k ;
n= ST gk A =
(z+y)" = [klx y" %, where [kL Il | e

k=0

For f(x,y,2) = 4 —x — 27! —y — y~! the authors of [24] state that they have
shown that the multiplier (z — 1)'2 results in a summable homoclinic point, and
they conjecture that the multiplier (z — 1)? actually suffices.

For more complicated non-expansive polynomials in ZI', it is not at all clear
what could substitute for the condition on the dimension of the unitary variety in
the commutative case.

Problem 6.5. For f € ZI', determine explicitly both A, (Xy) and Aaf (X¢).

Anticipating the entropy material in the next section, we remark that Chung
and Li ([11], Theorem 1.1), generalizing our earlier work for Z? in [41], showed that
Aq, (Xy) # {0} if and only if oy has positive entropy, and that A, (Xy) is dense
in X if and only if ay has completely positive entropy.

For expansive A-actions ay, Proposition 6.1,1) gives a continuous, equivari-
ant, and surjective map 7 from the full A-shift with symbols {—||f||1, —||f]l1 + 1,
...s I fll1} to X, which allows us to view this shift space as a symbolic cover of X.
In 1992 Vershik showed [67] that for certain hyperbolic toral automorphisms, this
symbolic cover could be pruned to a shift of finite type for which the covering
map 7 is one-to-one almost everywhere. This provided an arithmetic approach to
the construction of Markov partitions, which were originally found geometrically
by Adler and Weiss, and are one of the main motivations for symbolic dynamics.
Vershik’s arithmetic construction was further investigated in [35], [61]-{63].> Ein-
siedler and the second author [19] considered the problem of extending this idea to
obtain symbolic representations of algebraic Z?-actions, and gave an example of an
algebraic Z2-action for which the symbolic cover could be pruned to a shift of finite
type to obtain a map that is one-to-one almost everywhere, but the proof involved
a complicated percolation argument. Even for Heisenberg group actions virtually
nothing is known about the existence of good symbolic covers.

Problem 6.6. Find general sufficient conditions on an expansive f € ZI" so that
the symbolic cover in Proposition 6.1, 1) can be pruned to one that is (a) of finite
type or at least sofic, (b) of equal entropy, or (c) one-to-one almost everywhere.

3 Russian editor’s note: Vershik’s first paper on this subject was “The fibadic expansions of
real numbers and adic transformation”, Preprint Institut Mittag-Leffler, Ne 4, 1991, 1-9. In it
the idea of arithmetic encoding and symbolic cover for toral automorphisms was realized for the
Fibonacci automorphism of the 2-torus (sometimes also called Arnold’s cat map). The covering
shift is similar to the ‘golden mean shift’. The main reason behind arithmetic encoding was to
preserve the algebraic structures on the torus and the hyperbolic properties of the automorphism.
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7. Entropy of algebraic actions

We give here several equivalent definitions of the (topological) entropy of an
algebraic action, sketch some background material on von Neumann algebras, and
then describe recent results relating entropy to Fuglede-Kadison determinants.

Let A be a countable discrete group. For finite subsets F, K C A, define FK =
{60: 6 € F, § € K}. For what follows to make sense, we require that A be
amenable, namely, that there is a sequence {F,,: n > 1} of finite subsets of A such
that for every finite subset K of A we have

|F, A F,K|
| Fn

— 0 asn — oo.

Such a sequence is called a right-Folner sequence.

Suppose that « is an algebraic A-action on a compact Abelian group X. We
assume that there is a translation-invariant metric d on X, and let p denote nor-
malized Haar measure on X.

As before, we abbreviate the (left) a-action of A on X by using 6 - ¢ for ad(t).
Then A acts on subsets E C X by 6 - E = {0-t: ¢t € E}. Although this differs
from the traditional action of transformations on subsets using inverse images, this
seems better suited to our purposes, since all thea® are invertible, and its use is
consistent with the action of A on functions on X: if xp is the indicator function
of aset E,then §-xg =xr0d ' = xs.5.

To define topological entropy, we consider open covers % of X. If 724, ..., %, are
open covers, define their span as \/;_, %; = {Uin---NU,: U; € % for 1 < j < n}.
If 7 is an open cover and F is a finite subset of A, then let % ¥ = Vscp 0%, where
8- % ={6-U:U € %}. For an open cover % let N(% ) denote the cardmahty of
the open subcover with fewest elements, which is finite by compactness. It is easy
to check that N(Z vV ¥) < N(Z )N(?'). We define the open cover entropy of a to
be

heov(@) = sup lim sup(| | log N(%F”)> (7.1)
'ﬂ

74 n—oo

where the supremum is taken over all open covers of X.

We recall the elementary fact that if {a,: n > 1} is a sequence of non-negative
real numbers with a,, 4, < @y, + an, then a, /n converges to a limit as n — oo, and
this limit equals inf1<p<oo @n/n. Hence, for A = Z and F,, = {0,1,...,n — 1}, it
follows that the lim sup in (7.1) is actually a limit. There is a general version of this
argument valid for arbitrary amenable groups, due to Lindenstrauss and Weiss.

Proposition 7.1 ([46], Theorem 6.1). Suppose that ¢(F) is a real-valued function
defined for all non-empty finite subsets F' of A and satisfying the following condi-
tions:

1) 0 < o(F) < o0;
2) f " CF, then O(F") < o(F);
3) ¢(0F) = qﬁ( ) for all § € A;
4) J(FUF) < O(F)+o(F) if FNF' =@
Then for every right-Fplner sequence {Fy,} the numbers ¢(Fy,)/|Fn| converge to
a finite limit, and this limit is independent of the choice of right-Falner sequence.
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Roughly speaking, this fact is proved by showing that if K is a large finite
subset of A and ¢ is small, then any F' with |FF A FK|/|F| < € can be almost
exactly tiled by left translates of Fj,s of various sizes. Then the subadditivity and
translation-invariance of ¢ show that ¢(F)/|F| is bounded above, within a small
error, by ¢(F,,)/|Fy| for sufficiently large n.

Fix an open cover % of X, and put

¢(F) =logN(% ")

for every non-empty finite subset F' of A. Since each o is a homeomorphism of X,
it follows that

P(OF) = logN( \/ (59)%) = 10gN(5~( \/ 9%)) = logN< \/ M/> = ¢(F).

0EF 0cF 0EF

Conditions 1), 2), and 4) in Proposition 7.1 are trivially satisfied for this ¢. Hence,
for every open cover %, the limsup in (7.1) is a limit, and this limit does not
depend on the choice of right Fglner sequence {F,}.

The open cover definition of topological entropy is due to Adler, Konheim,
and McAndrew [1]. R. Bowen [8] introduced equivalent definitions that are better
suited for many purposes, and we now describe them.

If F is a finite subset of A and € > 0, a subset E C X is called (F,¢)-spanning
if for every t € X there is a u € F such that d(6=1-¢,671 - u) < ¢ for every 6 € F.
Dually, a set E C X is called (F,¢)-separated if for distinct elements t,u € E
there is a 6 € F such that d(6=!-¢,671-u) > e. Let rr(c) denote the smallest
cardinality of any (F,e)-spanning set, and let sp(F,€) be the largest cardinality of
any (F,e)-separated set. Put

1 1
hspan (@) = lim lim sup TET logrp, (¢) and hgep(e) = lim limsup TET log sg, ().
E—

e=0 nono | Fpl 0 nooo |Ful

If %. denotes the open cover of X by e-balls, then the elementary inequalities

N(Z") <rp(e) < sp(e) < N(Z,)
show that hooy (@) = hgpan (@) = heep (), and so all three quantities are independent
of the choice of a right Fglner sequence.

One more variant of the entropy definition, using volume decrease, is also useful.
Let B. = {t € X: d(t,0) < ¢}, and for finite F C A put B = ;.5 ¢ - Be. Define

1
hyol(@) = lim lim sup — —— log u(B™).

e=0 pooo |Fn|

If a subset E is (F,e)-spanning, then X = {J,c z(t+BF), so that 1 < |E|u(BE), and
hence hyol(@0) < hgpan(@). If E is (F,¢)-separated, then the sets {t + 35/2): te E}
are disjoint, so that |E|,u(Bf/2) < 1, proving that hgep(a) < hyei(e). Thus, all these
notions of entropy coincide, and we let h(a)) denote their common value. We remark
that these are also equal to the measure-theoretic entropy of o with respect to Haar
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measure, but we will not be using this fact. Deninger’s paper [15] has complete
proofs of these facts, and also of the fact that each limsup in these definitions can
be replaced by lim inf without affecting the results.

If ® € aut(A) and {F,} is a right Fglner sequence, then clearly so is {®(F,,)}.
It follows that h(ass) = h(ay), that is, the entropy is invariant under a change of
variables.

Suppose that « is an algebraic A-action on X, and that Y is a closed A-invariant
subgroup of X. Let ay denote the restriction of a to Y, and let ax,y be the
quotient action on X/Y. An important property of entropy is that it adds over
the exact sequence 0 -V — X — X/Y — 0.

Theorem 7.2 (The Addition Formula, [38], Corollary 6.3). Let A be an amenable
group, let a be an algebraic A-action on X, and suppose that Y is a closed,
A-invariant subgroup of X. Then h(a) = h(ay) +h(ax,/y).

The Addition Formula has a long history.* The basic approach is to take a Borel
cross-section to the quotient map X — X/Y, and regard a as a skew product
with base action ax,y and fiber actions that are affine maps of ¥ with the same
automorphism part ay but with different translations. The idea is then to show
that the translation parts of these affine maps, being isometries, do not affect the
entropy. The case A = Z was proved by R. Bowen [8], and the case A = Z? is
handled in [44], Appendix B, using arguments due originally to Thomas [66]. Fiber
entropy for amenable actions was dealt with in [68]. There is a serious difficulty in
generalizing these ideas to non-commutative groups A, namely, the lack of a scaling
argument used to eliminate a universal constant due to overlaps of open sets in
a cover. However, machinery developed by Ollagnier [52] handles this issue, and
this was used by Li to give the most general result cited above.

When A = Z< there are explicit formulae for the entropy. First consider the case
A = 7. Without loss of generality, we can assume that f(u) € Z[u*] has the form
flu) = epu™ + -+ + cyu + ¢g with epcg # 0. Factor f(u) over C as f(u) =
¢ [[j=1(u = A;j). Then Yuzvinskii [70], [71] showed that

h(ary) =loglen| + > log™ [A;] = m(f). (7.2)
j=1

An interpretation of (7.2) from [45] shows that the term > 7, log™ |\ is due to
geometric expansion, while the term log |c,| is due to p-adic expansions for those
primes p dividing c¢,, an adelic viewpoint that has been useful in other contexts as
well.

Mahler measure is defined for polynomials f € Z[uli, e ,udﬂ] = Ry by the
formulae

1 1
m(f)=/ 10g|f|=/"'/ log | f(e*™™1,...,e*™)| dsy - - - dsa,
Sd 0 0

4 Russian editor’s note: This formula is a generalization of the classical Abramov-Rohlin for-
mula for the entropy of a skew product (see JI. M. A6pamos, B. A. Poxunn, “Durpomnus Kocoro
npoussegenus”, Becrn. JIT'Y, 1962, Ne 7, 5-13 [L. M. Abramov and V. A. Rohlin, “Entropy of a skew
product of mappings with invariant measure”, Vestnik Leningrad. Univ., 1962, no. 7, 5-13]).


http://www.ams.org/mathscinet-getitem?mr=140660
http://www.ams.org/mathscinet-getitem?mr=140660
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and M(f) = exp(m(f)) [50]. One of the main results in [44] is that for non-zero
f € Rq we have h(ay) = m(f). With this information, the entropy for arbitrary
algebraic Z%-actions can easily be found. Let a be an ideal in Ry that is not
principal. A simple argument ([44], Theorem 4.2) shows that h(ag,/.) = 0. Any
finitely generated Rg4-module M has a prime filtration 0 = My C M, C --- C M,
with M;/M;_1 = Rq/pj, where the p; are prime ideals in Rq. Then the Addition
Formula shows that h(aas) = h(ag,/p,) + - +h(ag,/p, ), and each summand can
be computed from our preceding remarks.

To conclude this discussion of the A = Z? case, we point out that there is a com-
plete characterization of principal actions with zero entropy. Recall the definition
in §4 of a generalized cyclotomic polynomial.

Proposition 7.3 [9], [64]. Let f € Z[ui,...,uF']. Then h(ay) = 0 if and only if
either f or —f is a product of generalized cyclotomic polynomials times a monomial.

This result was originally proved by Boyd [9] using deep results of Schinzel, but
was later given a simpler and more geometric proof by Smyth [64].

Turning now to non-commutative groups A, we sketch some background material
on related von Neumann algebras. The functional analysis used can be found, for
example, in [13], Chaps. VII and VIII. Let

%(A,C) = {w = Zw(;&: ws € C and |Jwl|3 := Z lws|? < oo},

dEA dEA

which with the standard inner product <Z§ wsd, Y s 1156> = ) s wsT; is a complex
Hilbert space. As in the case of £1(A,C), there is a left-action of A on £2(A,C)
given by 6 - (35 wsd) = Y5 ws 60.

The group von Neumann algebra A4 A of A consists of all those bounded linear
operators T € %’(EQ(A,C)) commuting with the left A-action, that is, such that
T(6-w) =20 T(w). There is a natural inclusion of CA in A A given by f — py,
where, as before, py(w) = w - f*. In addition, there is a faithful normalized trace
function tr ya: A A — C given by tr ya(T) = (T'(1a),1a). This means that
tr_ya is linear, tr ya(1) = 1, tryaA(TT*) > 0 for every T # 0, and tr ya(ST) =
tr A (TS)

Using this trace, Fuglede and Kadison [21] defined a determinant function on
A A as follows. Let T € A A. Then TT* > 0, so the spectral measure v of the
self-adjoint operator TT* is supported on [0,00): in fact, on [0,|77*||]. Using
the functional calculus for Z(¢2(A,C)), we can form the operator log(TT*) =
foof log ¢t dv(t), where the lower limit 0" of the integration indicates that we ignore
any point mass at 0 that ¥ may have. We then define

1
det 4A T = exp itrkﬂA(log(TT*)) )

This Fuglede-Kadison determinant has the following very useful properties (see
[47], §3.2 for details):

(a) det_yaT* =det_yaT;

(b) if T>0in A A, then det_ya T = exp(tr s a(logT));
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(¢) if 0K ST in &A, then det_yn S < det_yaT;

(d) det_ya ST = (dett/;/A S) (dett/yA T).
We remark that the multiplicativity of det 4 A is not obvious, essentially being
a consequence of the Campbell-Baker—Hausdorff formula and the vanishing of the
trace on commutators, although for technical reasons a complex variables approach
is more efficient.

Example 7.4. Let A = Z¢ and write elements of Z? as n = (ny,...,ng). The
Fourier transform identifies ¢2(Z%, C) with L?(T9, C), with n being identified with
the function xn, where xn(s) = exp[2mi(n -s)] for s € T?. Any bounded linear
operator T on ¢?(Z¢ C) commuting with the Z%-action must have the form of
convolution with some element v € £2(Z%, C). Hence, the Fourier transform V of v
must give a bounded linear operator on L?(T9) via pointwise multiplication, and
this forces V' € L>°(T%,C). Conversely, every V € L>(T¢ C) corresponds to an
element of .#Z4. This identifies .4 Z? with L°*(T%,C). Under this identification,

tr_yza(V) = /Td V(s)ds and det 47V = exp{/w log |V (s) ds} .

For f € ZZ% we observed that pr €N 7%, and this corresponds to multipli-
cation by f(e 271 ... e~27s4). Hence, in this case det_yz4 f = M(f), and so
logdet_yza f = m(f) =h(ay).

Indeed, it was the equality of Mahler measure, entropy, and the Fuglede-Kadison
determinant in Liick’s book [47], Example 3.13 that originally inspired Deninger to
investigate whether this phenomenon extended to more general groups. He was able
to show in [15] that under some conditions it did. Further work [17], [38] extended
the generality, culminating in the comprehensive results of Li and Thom [40].

To describe the last work, we recall that p; is a bounded linear operator on
??(A,C). More generally, if ' € ZA**!, then there exists a bounded linear opera-
tor pr: £2(A,C)k — (2(A, C)! given by right multiplication by F*, where (F*); ; =
(F;;)*. There is an extension of det_ya to such F' (see [40], §2.1 for details).

Theorem 7.5 ([40], Theorem 1.2). Let A be a countable discrete amenable group,
and let f € ZA. Suppose that ps: (2(A,C) — (2(A,C) is injective. Then h(ay) =
logdet_ya f. More generally, if F € ZAF*! and if pp: 2(A,C)F — £2(A,C)
is injective, then h(ap) < logdet ya F'. If k = I, then h(ap) = h(ap) =
logdet_ya F.

In particular, h(ay) = h(ay-). This is a highly non-trivial fact, since there is no
direct connection between ay and ag-.

The computation, or even estimation, of the values of Fuglede-Kadison determi-
nants is not easy. In the next two sections we will explicitly calculate the entropy
for certain principal actions of the Heisenberg group.

As pointed out by Deninger [15], there are examples of lopsided polynomials f
for which det_ya f can be computed by a rapidly converging series.

Example 7.6. Let f(z,y,2) =5—x—2 ' —y—y~! € ZT'. We write f = 5(1—g),
where g = (z+2 7' +y+y~1)/5. It is easy to see ([5], Lemma 2.7) that the spectrum
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of g, considered as an element in 4T, is contained in [—4/5,4/5]. Hence, we can
apply the functional calculus to compute log f via the power series for log(1 — t),
yielding

log f =log5 + log(1l — g) = logh — Z %

Now tr_y1(g"™) is the value of the constant term of g™. If rr(n) denotes the number
of words over S = {z,27 Y y,y~ !} of length n whose product is 1, then clearly
tryr(g") = 5" ( ). In any word over S with product 1, the number of occur-
rences of x and x~! must be equal, and similarly with y and y~!, so that 7r(n) = 0
for n odd. The numbers rr(2n) grow rapidly:

rr(2n) 42"(212 +0( L >)

(see [28], although the result stated there is off by a factor of 2). We thank David
Wilson for providing us with a short Mathematica program that computes rr(2n)
up to rr(60), which is a 33 digit number. Hence,

1 1 20 rr(2n) rr(2n)
tr 41 log f = og5—7;m— Z oo -
By the trivial estimate rr(2n) < 42, the last sum has value less than 10~7. The
remaining part therefore gives the value for h(ay) = tr s log f = 1.514708, correct
to six decimal places.

We remark that 59 = = + 2~! 4+ y 4+ y~!, considered as an operator in AT,
has been studied intensively, and is closely related to Kac’s famous Ten Martini
Problem. Indeed, the image of 5g in the rotation algebra factor <% of AT is
Harper’s operator Hy (cf. [5]). Kac conjectured that for every irrational 6 the
spectrum of Hy is a Cantor set of zero Lebesgue measure. This conjecture was
recently confirmed by deep work of Artur Avila.

Remark 7.7. The calculations in the previous example can be carried out just as
well in any group A containing two elements x and y. The only change is that
the number 74 (n) of words over S = {z,771, 5,47 !} whose product is 1 will be
different, depending on A. For comparison with the example, we work this out
for A = 7Z? with commuting generators  and y, and for A = Fy, the free group
with generators z and y.

Recalling that f = 5(1 — g), let us define

L(f,A):=1 - .
()= tog5 - 3= g5 - 3 2201

The preceding Example 7.6 shows that L(f,T') = 1.514708.
For A = 72, we are computing the entropy for f considered as a polynomial in
the commuting variables z and y, and this is given by Mahler measure to be

11
L(f,7%) = / / log |5 — 2 cos(2ms) — 2 cos(2nt)| ds dt = 1.507982.
o Jo
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Observe that any word in S C I whose product is 1 Abelianizes to the unity in Z?2,
and so rr(n) < 7. (n), which is reflected in the inequality L(f,T') > L(f, Z?).

The case A = F5 is more interesting. Here any word in the generators x, y
whose product is 1 must also give a word in any group A containing x and y with
product 1, so that rp,(n) < ra(n) for all groups A. Hence, L(f,F3) > L(f, A), so
that L(f,F2) gives a universal upper bound.

To compute L(f,Fs), start with the generating function for rg,(2n), which by
[14], §1.9 is known to be

(2 =1+ 4t + 2862 + 2323 + 2092t* +
ZTFz Tl 1+2 *1—12 + +

Letting

H(t) _/OtG(u)ld%

u

we get from a calculation with Mathematica that
1 1
L(f,F2) =logh — S H (5~ 3= log{ 8(35 + 13@)} >~ 1.514787.

Indeed, L(f,F2) > L(f,T), but the difference appears only in the fifth decimal
place.

We remark that L. Bowen [7] has extended a notion of entropy to actions of sofic
groups, and in particular free groups (although these do not have Fglner sequences).
In [7], Example 1.1 he shows that in the previous discussion L(f,F2) equals the
sofic entropy of the corresponding algebraic Fs-action.

It is somewhat surprising that here L(f,F3) is the logarithm of an algebraic
number, since in the case A = Z¢ with d > 1 this appears not to generally be the
case. For example, when d = 3 and g = 1+ w3 + ug + ug, Smyth [65] has computed
the logarithmic Mahler measure to be m(g) = h(a,) = log[7¢(3)/27?%], where ¢
is the Riemann zeta-function.

Next we extend the ‘face entropy’ inequality described for principal Z%-actions
in [44], Remark 5.5 to principal ZT'-actions. This inequality proves that many such
actions have strictly positive entropy.

We start with the basic case.

Proposition 7.8. Let f(x,y,z) = Z?:o gr(x, 2)y" € ZT" with go(x,z) #0. Then
h(ay) =2 m(go).

Proof. By definition the map pg, (s, TZ — T% has kernel X,,, and is surjective

since multiplication by go(z, 2) is injective on Z[z+, z%]. Define ®: TZ — TZ
by (®u);; = uitj,;. Then for every k € Z we get that u € ker pg,(z,2) if and only
if ®F(u) € ker Pgo(wz—F,z)-

The algebraic Z?-action ag, on X, has entropy m(go). Fix €,6 > 0. Then for
sufficiently large rectangles @ C Z? there is a (Q, ¢)-separated set {uy,...,un} C
Xg, With NV > e(m(90)=9IQl Note that since dr is translation invariant, for every

u € T2 the translated set {ur +u,...,uny +u} is also (Q, €)-separated.
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Let o )
) = Ztgz)mzzj c T
]
be arbitrary points, and put ¢t = >0 ¢y € TV, The condition for ¢ to be

in X is that ps(t) = 0, which in terms of the ¢(™) becomes

D

> Pt FT) =0 for all k € Z. (7.3)

r=0
Let L > 1. For each (jo,j1,---,jr—1) € {1,..., N}¥ we will construct a sequence
{tgg),tgo ;2, ... ,tgojjl))u }in TZ that will be used to create an e-separated set

in Xf
Put ¢ = 0 for all n > 1, so that (7.3) is trivially satisfied for k& > 1. Define

tg-g) = uy, for 1 < jo < N. Then (7.3) is satisfied at k = 0 because pg (. (uj,) = 0.

Since pg,(z2-1,2) 18 surjective on ']I‘Z2, for each jp there is a tg-;l) € T% such that

Pantaz-1,2) (£ ) = =Py (aa-1.2) (1),

Let t( ;) = t( D4 ®(uy,) for 1 < ji < N. Since pgy(zo-1,2)(P(uj,)) =0, it follows
that (7 3) is batlsﬁed at k = —1 for all choices of jo and jj.

Similarly, for each {t 0),15]0 ]1} there is a t( 2) € TZ with

Pgo(zz—2,2) (tg;iz) = TPgi(xz2,2) (é;;i) T Pga(zz—2,2) (t§g))'

Put ¢} %), = 15,7 + @2(uz,) for 1< jo < N. Then (7.3) holds for k = 2 and all
choices of jg, j1, Jo.

Continuing in this way, for every L-tuple (jo,j1,..-,jr-1) € {1,..., N} we

have constructed a sequence {t§2)7t§i)h ..7t§0 L+J1L 1} so that (7. 3) is satisfied

for k > —L + 1. Each choice can be further extended to find ¢ for n < —L for
which the resulting point is in Xjy.
Identify Z? with T' via the rule (4,7, k) < 2°27y*, and consider the set

We claim that the NZ points in X; constructed above are (Q,¢)-separated. For
at the first index k for which jj, # j;,, the points ®(u;, ) and (I)k(uj;'c) differ by at
least ¢ at some coordinate of ®*(Q).

Finally, if we choose @) to be very long in the z-direction as compared with the
z-direction, and make L small compared with both quantities, then we can make Q
as right-invariant as we please. Hence, there is a Folner sequence {Q,,} in T’ with

S(@vm 5) > e(m(go)—5)|§m|7

and thus h(ay) > m(go). O
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Recall from §2 that the Newton polygon A'(f) of an f =73, fr(z)zkyt € ZT
is the convex hull in R? of those points (k,1) for which f;(z) # 0. A face of A(f) is
the intersection of A(f) with a supporting hyperplane, and thus is either a point
or a line segment. For each face F' of A(f) let

fr(y,2)= Y fra(2)a"y.

(k1)eF

For every face F of A(f) there is a change of variables followed by multiplication by
a monomial transforming f so that F' now lies on the z-axis with the rest of A(f)
in the upper half-plane. Since entropy is invariant under such transformations, we
can apply Proposition 7.8 to obtain the following face entropy inequality.

Corollary 7.9. If f € ZT and F is a face of A (f), then h(ay) = h(ay,).

Face entropies are essentially logarithmic Mahler measures of polynomials in
commuting variables, and so are easy to compute. Observe that if h(ay) = 0,
then the Corollary shows that h(ay.) = 0 for every face F' of A'(f), and then
Proposition 7.3 gives a complete characterization of what fr can be. Indeed, Smyth
used the face entropy inequality as the starting point for his proof of Proposition
7.3. However, the algebraic complexity of ZI' prevents a direct extension of his
methods, leaving open a very interesting question.

Problem 7.10. Characterize those f € ZI" for which h(ay) = 0.

We recall that the Pinsker o-algebra of a measure-preserving action « is the
largest o-algebra on which the entropy of « is zero. An action has completely
positive entropy if its Pinsker o-algebra is trivial. An old argument of Rohlin
shows that the Pinsker o-algebra of an algebraic action o on X is invariant under
translation by any periodic point. Hence if the periodic points are dense, then
the Pinsker o-algebra is invariant under all translations, and so arises from the
quotient map X — X/Y, where Y is a compact a-invariant subgroup. Thus,
the restriction of « to its Pinsker o-algebra is again an algebraic action (see [44],
Proposition 6.2), providing one reason for the importance of the above problem.
For algebraic Z?-actions there is an explicit criterion for completely positive entropy
in terms of associated prime ideals (see [44], Theorem 6.5), but even in the case of
Heisenberg actions no similar criterion is known.

Problem 7.11. Characterize the algebraic I'-actions with a completely positive
entropy.

For algebraic Z%actions, completely positive entropy is sufficient to imply that
they are isomorphic to Bernoulli shifts [58]. Is the same true for algebraic I'-actions?

Problem 7.12. If an algebraic I'-action has completely positive entropy, is it nec-
essarily measurably isomorphic to a Bernoulli I'-action?

8. Periodic points and entropy

Let A be a countable discrete group and « an algebraic A-action on X. A point
t € X is periodic for « if its A-orbit is finite. The stabilizer {0 € A: § -t = t}
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of such a point ¢ has finite index in A, and we will need a generous supply of
such subgroups. Call A residually finite if, for every finite subset K of A, there is
a finite-index subgroup A of A such that A N (K \ {1}) = @. Every finite-index
subgroup A of A contains a further finite-index subgroup A’ of A that is normal
in A, so that residual finiteness can be defined using finite-index normal subgroups.
If {A,.} is a sequence of finite-index subgroups of A, then we will say that A,, — oo
if, for every finite set K C A, there is an nx such that A, N (K \ {1}) = @ for
all n > ng.
For a finite-index subgroup A of A, let

Fixa(o) ;= {t € X: X-t =t for all A € A}.

If A is normal in A, then for A € A and § € A we have JA6~! = M € A. Hence,
in this case Fixy(«) is A-invariant, for if ¢t € Fixy(«), then A« (§-¢) = (M) -t =
(N)-t=6-(N-t)=06-t.

We will focus on expansive principal actions. Let A be a countable residually
finite discrete group, and let f € ZA be expansive. Recall the notation and results
from Proposition 6.1. For a finite-index subgroup A of A, let the superscript A on
a space denote the set of those elements in the space that are fixed by A, so, for
example,

2 (AR)Y = {w € (°(AR): A-t =t forall A € A}.

Proposition 8.1 ([17], Proposition 5.2). Let A be a countable discrete group, and
let f € ZA be expansive. With the notation of Proposition 6.1, every finite-index
subgroup A of A satisfies

Fixa (o) = m(0°(A,Z)N) 2 0°(A,Z)Y [ py (0°(A, Z)M).

Proof. Any point ¢ € Fixa (as) can be lifted to a point ¢ € £(A,R)?, and then the
proof of Proposition 6.1 yields A-invariant points at every step. [J

Note that £°(A, Z)? is a free Abelian group of rank [A : A], the index of A in A,
and that py is an injective endomorphism of this group by expansiveness.

Corollary 8.2. Under the hypotheses in Proposition 8.1,
| Fixa(ag)| = |[det(pflee(am))]- (8.1)

Proof. Observe that p; is an injective linear map on the real vector space £>°(A, R)*
of dimension n = [A : A] and maps the lattice £*°(A, Z)? to itself. If A is any n xn
matrix with integer entries and non-zero determinant, then it is easy to see, for
example, from the Smith normal form, that |Z"/AZ"| = | det(A4)|. O

Remark 8.3. Since we will need to complexify some spaces in order to use complex
eigenvalues, let us say a word about conventions regarding determinants. If A is an
n xn real matrix, we could regard A as an n X n complex matrix acting on C™, or as
a (2n) x (2n) real matrix acting on R™ @iR"™, and these have different determinants.
We will always use the first interpretation.
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With Corollary 8.2 we begin to see the connections among periodic points,
entropy, and Fuglede—Kadison determinants. For expansive actions, periodic points
are separated, and so |A| ™! log| Fixa(a)| should approximate, or at least provide
a lower bound for, the entropy h(ay). But by (8.1), this is also a finite-dimensional
approximation to the logarithm logdet_y A f of the Fuglede-Kadison determinant
of ps. The main technical issue is then to show that both of these approximations
converge to the desired limits. For expansive ay this is relatively easy, but for
general oy there are numerous difficulties to overcome.

We can now deduce two important properties of expansive principal actions.

Proposition 8.4. Let A be a residually finite countable discrete amenable group,
and let f € ZA be expansive. Then

1) the ag-periodic points are dense in Xy, and

2) if | X¢| > 1 (that is, if f is not invertible in ZA), then h(ay) > 0.

Sketch of proof. 1) Let t € Xy and find a u € £>°(A,Z) with 7(u) = f(u-w?) = t.
By Proposition 6.1, 4), there is a finite subset K of A such that if ux € ¢>°(A,Z)
denotes the restriction of u to K and 0 elsewhere, then m(ug) is close to t. By
enlarging K if necessary, we can assume that ) ;o [w§| is small. Let A be
a finite-index subgroup of A such that AK N VK = @ for distinct A\, \' € A,
and let tg = Y ycp A~ m(uk). Then t € Fixa(ay) and tg is close to t.

2) Again choose a finite subset K such that 3 ;4 [w§| is small, where we may
assume that w = 1. Find a subgroup A with AK NN K = & for distinct A, A’ € A.
If F is any almost invariant Fglner set, then |F N A| is about equal to |F|/[A : A].
Then for each choice of by = 0 or 1 for A € F N A, the points D, prp ba(X - w?)
are (F,1/2)-separated. Hence if {F,} is any Felner sequence, then for every e < 1/2
we have

log 2

aa "

1 1
lim sup TET log s(Fp,,€) > limsup ——

|Fy N Allog2 >

For A = Z%, it turns out that the periodic points for aj; are always dense
in X for any finitely generated ZZ?-module M (|60], Corollary 11.3). The simple
example of multiplication by 3/2 on Q dualizes to an automorphism of a compact
group with no non-zero periodic points, since (3/2)™ — 1 is invertible in Q (see [60],
Example 5.6(1)). We do not know the answer to the following.

Problem 8.5. Let A be a countable discrete residually finite group, and let M
be a finitely generated ZA-module. Must the a);-periodic points always be dense
in XM7

We now focus on using periodic points to calculate entropy. It is instructive to
see how these calculations work in a simple example.

Example 8.6. Let A = Z, and let f(u) = u> —u—1 € ZA = Z[uF]. Let A,, = nZ
and F,, = {0,1,...,n — 1}. Then {F,} is a Folner sequence in Z that is also
a fundamental domain for A,,. Denote by €,, the set of all nth roots of unity in C.
For ¢ € Q, let ve = >, ., CFuk € £°°(Z,C)*». Then py(v¢) = Cve, so the ve form
an eigenbasis for the shift opetrator on ¢>°(Z,C)*». Hence, ps(ve) = f({)ve for
each ¢ € 0.
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We can consider the elements of (>°(Z,C)*» as elements in the n-dimensional
complex vector space (*°(Z/nZ,C). The matrix of p; with respect to the basis
{1,u,...,u" 1} is the circulant matrix

-1 -1 1 0o ... 0 0
o -1 -1 1 ... O 0
1 o ... ... ... -1 -1
-1 1 ... ... ... 0 -1

We can compute the determinant of C,(f) using the eigenbasis {vc: ¢ € Q,}.
Factor f(u) as (u — 7)(u — o), where 7 = (1 ++/5)/2 and ¢ = —1/7. Then

| Fixa,, (of)| = |det pf‘zoo(zmz,c)’ = H (Ol
CeN,

[T 17 =<l =¢l= 17" =1]]o" —1].

CEQ’VL

Thus,
1
lim - log | Fixa,, (o) = log T = m(f).

n—oo

Since ay is expansive, the periodic points are separated, and so log T is certainly
a lower bound for h(ay). But it is also easy in this case to see that it is an upper
bound, using, for example, approximations by homoclinic points as in the proof of
Proposition 8.4.

Note that if f € Z[uT] had aroot £ € S, then the factor |€” — 1] in the calculation
of the determinant would occasionally be very small, which could cause the limit
not to exist. This is one manifestation of the difficulties with non-expansive actions.

We turn to the Heisenberg case A =T'. For g, 7,8 > 0 put Ayq 59,4 = (279, Y%7, 29),
which is a normal subgroup of I' of index rsq3. Let f € ZI' be expansive. Recall
that ko = ko(f) = 1/(3|f]l1) is an expansive constant for ay. In particular, if A
is a finite-index subgroup of I', and if ¢ # u € Fixa(cy), then for any fundamental
domain @ of A there is a v € @) such that dr(ty, uy) > Ko.

A Dbit of notation about the limits we will be taking is convenient. If ¥(A,q 54.4) is
a quantity that depends on A,q ¢4, then we write limg_ o ¥(Arq,s4,4) = ¢ to mean
that for every ¢ > 0 there is a gy such that [)(Aq,sq,4) — ¢ < € for every ¢ > qo
and all sufficiently large r and s.

Theorem 8.7 ([17], Theorem 5.7). Let f € ZI' be expansive, and define Ayq sq.4 aS
above. Then

1
thgo m log [ Fixa,, .., ()] =h(ay).
Proof. In the light of Example 8.6, it is tempting to use for A4 ¢q,4 @ fundamental
domain of the form Q = {zFy'2™:0 < k < rq, 0 <1 < s¢,0 < m < g}, but
such a @ is far from being a right-Fglner set, since right multiplication by x will
drastically shear @ in the z-direction.
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The method used in [17], Theorem 5.7 is to decompose @ into pieces, each of
which is thin in the y-direction, and translate these pieces to different locations in I'.
The union of these translates will still be a fundamental domain, but now it will
also be Fglner, and so can be used for entropy calculations. This method depends
in general on a result of Weiss [69], and ultimately goes back to the e-quasi-tiling
machinery of Ornstein and Weiss [53]. In our case, we can give a simple description
of this decomposition.

Choose integers a(q) such that a(q) — oo but a(q)/q — 0 as ¢ — oo, and consider
the set

Frgrg= {mkylzm: 0<k<rqg, LLI<L+a(g), 0<m<q}.

It is easy to verify that since a(q) is small compared with g, right multiplication by
a fixed v € T" creates only small distortions, and so for every v € I' we have

|Frg,0,0 & Frg 1,47

lim =0. 8.3
o Froral 53
Define
ra/at@)-1
Qrq.sq.q = U " Frg.a(q)ja0
j=0

where we make the obvious modification in the last set in the union if a(g) does
not evenly divide rq. Then Q4 4,4 is also a fundamental domain for A,q 54,4, but
now it is also a Fglner sequence as ¢ — oo by (8.3). By the separation property of
the periodic points, for all € < kg we have |Fixa,, .. ()] < 5(Qrq,sq,4,€). Since
{Qrq,sq,q} is a Folner sequence,

lim sup

]‘Og| FiXqu,sq,q (a)| < h(af)
g—o0 |Qrg,sq.dl

For the reverse inequality, let § > 0 and let € < /3. Choose a finite set £ C T’
such that Z |ws| < ——— . The sets

2 S
Prqsqq = ﬂ Qrq,50,47
YeE

also form a Fglner sequence, and | Py,

Fix ¢, v, and s for the moment, and choose a (Pyq,sq,q,0)-separated set S
of maximal cardinality. For every t € S, let ¢ € (I, R) be its lift, with
[t]oo < 1 and ﬁ(~) =t.  Write v(t) € £>°(I,Z)*rasaa for the unique point
with v(t), = (pf (), for all 7 € Qrq.eq.q- Our choice of E implies that the points
in {r(v(t)): t € S} C Fixa,,,,.(ay) are (Prq sqq,0/3)-separated, hence distinct.
Thus, |S| < |Fixa,, ., ,(ar)]. Since {P,q sq,q} is Folner and |Pry sq.q|/|Qrg.sq,4] — 1
as ¢ — oo, we see that

1
log $(Pyq,59.q,9) < liminf ————log | FiXA, 4. g0 ()],

q— 00

h(cs) = liminf

q—00

1 Prq,s0.4

completing the proof. [J



Survey of Heisenberg actions 699

We apply this result, combined with Corollary 8.2, to compute the entropy
for the expansive principal I'-actions ay. In the above notation let V444 =
(°(T,C)Arasaa 50 that

| FiXA, o0 ()] = |det(of]v,y .0.0)]- (8.4)

We will compute this determinant by decomposing V,q 54,4 into ps-invariant sub-
spaces, each having dimension 1 or ¢. To do this, for each (£,7,¢) € S? let

vemc= Y. &nl¢matylam e (T, C).

k,l,m=—o0

Observe that py(“é,n,() = Ve y_l = 1) V¢,n,¢, and similarly pZ(viﬂ%C) = CU¢m,¢
so that ve , ¢ is a common eigenvector for p, and p,. However,

vafnC Zg xkylzm. — Zg Cm kllml
k,l,m k,l,m
=) ET MO aFy ™ = Eve e e
k,l,m

Let Q, = {¢ €S: ¢? =1} and Q) = Q, \ {1}. For arbitrary (£,7) € S let

@ (C’Ufmcj7< if C S Qip

(Cvim’l if C =1.

We(€,n) =

By the above, for every (§,1) € S? and ¢ € €, the subspace W¢(&,n) is invariant
under the right action of T.

Now let f € ZI', and assume that f is expansive. Adjusting f by a power of x if
necessary, we may assume that f has the form f(z,y,z2) = ZjD:o 27 g;(y, z), where
each g;(y, z) is in Z[y*, 2%], and go(y,2) # 0 and gp(y, 2) #0. The action of Py
on vg ¢ is then given by

P (Ve n.c) Z Pxig;(y,z) (ven,c) ijgj 1, Q) Ve nei ¢-
j=0 7=0

If ¢ = 1, then py(ve 1) = f(&, M, 1)ve .1, s0 is given by the 1x 1 matrix Ay f(£,71) =

[f(€,n, 1)]. If ¢ € Qf, then the matrix of py on W¢(§,n) takes the following ¢ x ¢

circulant-like form, where for notational convenience we assume that ¢ > D:

AC7f(£’77)
9o(n,¢) g1(n, )€ .. gp(n,Q)EP ... 0
0 90(1¢, ¢) (77C Q)¢ ga(n¢, Q)& ... 0
_ 0 0 9o(n¢%,¢)  g1(n¢% Q)¢ ... 0

aC 08 gL 02 0 o gm0
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By our expansiveness assumption p; is injective, and each subspace W¢(§,7n) is
ps-invariant, hence det A¢ ¢(€,m) # 0 for all (£,n) € S? and all ¢ € Q.

Now suppose that r,s > 0. For convenience we will assume that both r and s are
primes distinct from ¢. Then {ve . ¢c: (§,1,() € Qg X QsqxQy} is a basis for Vig sq,q-
Note that if ¢ € Qf, then W¢(&,n) = We(€,n¢7) for 0 < j < g. Since Qqq = Q, x Qq
by the relative primeness of s and ¢, we can parameterize the spaces W¢(§,1) by
the (new) parameter n € Q. This gives the py-invariant decomposition

V;“q,sq,q = @{Wﬂfaﬁ)i (f»ﬁ) € qu X qu}
® @{WC(S»U) (5,777@) € qu x £ X qu} (85)

We now evaluate the limit of
1
—qu?) log | det (Pf|qu,sq.q) ’ (8.6)

as r,s — 0o using the decomposition (8.5).
On each of the 1-dimensional spaces W1(&,n) in (8.5) py acts as multiplication
by f(&,m,1). Hence, the contribution to (8.6) of the first large summand in (8.5) is

1
@ 2. lelfenm L (8.7)

(ﬁaﬁ)Equ Xqu

By expansiveness, f(&,7,1) never vanishes for (£,1) € S?, so that log|f(£,n,1)| is
continuous on S2. By convergence of the Riemann sums to the integral, as r, s — 0o
we have

1
na > toelfen )~ [ toglfe.n.nldgdn
r5q 52
(f:W)EquXqu
The additional factor of ¢ in the denominator of (8.7) shows that it converges to 0
as r,s — 00.

For the spaces W¢(§,n) with ¢ € Qg, the expansiveness assumption shows that
det A¢ £(€,n) never vanishes for (£,n) € S?, so again log | det A¢ ¢(€,7)| is continu-
ous on S2. Hence, for ¢ € Q;, we have

1
m Z log|detA<,f(fa77)| —>//Sz log‘detACVf(g,angdn

(£m)€Qrg X Qs

as r,s — oo. Adding these up over ¢ € Q, and observing that Q0| = [Q4s|/q, we
have shown the following.

Theorem 8.8. Let f(z,y,2) = ZJD:O 27 g;(y,z) € ZT be expansive. Then

h(ay) = lim iZ//SQlogydetAC,f(g,n)\dgdm (8.8)

q—00 q2
q a prime CeQy

where the matrices A¢ r(€,1) are as given above.
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At first glance the denominator ¢2 in (8.8) seems puzzling. The explanation is
that one factor ¢ comes from averaging over the gth roots of unity, and the sec-
ond ¢ comes from the size of the matrices A¢ ¢(£,n). From the point of view of
von Neumann algebras, we should really be using the ‘normalized determinant’
|det A¢ £(€,1)]"/4 corresponding to the normalized trace on C", and then the sec-
ond g would not appear.

For expansive polynomials in ZI" that are linear in = the entropy formula in the
preceding theorem can be considerably simplified.

Theorem 8.9. Let f(x,y,2) = g(y,2) + xh(y,z) € ZI', where ¢g(y,z) and h(y, z)
[y*, 2%]. If ay is expansive, then

are Laurent polynomials in Zly
hag) = [ max{m(a(-.0))m(h(-.O) . (89)

where m(g( - C)) = fS log |g(n, ¢)| dn and similarly for h.

Corollary 8.10. Let f(x,y,2) = g(y, 2)+xh(y, 2), and assume that neither g nor h
vanish anywhere on S®. If oy is expansive, then h(ay) = max{m(g), m(h)}.

Proof of the corollary. After the change of variables  — y, y — x, and z — 271,

we can apply Theorem 5.9 to conclude that either m(g(-,7)) > m(h(-,n)) for all
nes,orm(g(-,n) <m(h(-,n)) for all n € S. The result then follows from (8.9)
by integrating over n € S. [

The intuition behind (8.9) is simple to explain. The matrices A¢ ¢(&,7) for ¢ € O,
take the form

9(n,¢) h(n,¢)§ 0 0
Acp(&m) = ? g(nf,é) h(nf,C)f N ? . (8.10)
e, 08 0 g0
Then -
det A¢,f(€m) Hg n¢?,¢ 1)"_15“]1;[()?1(77@(;)- (8.11)

For fixed ¢ the first product behaves like M(g( -, ¢)) ? and similarly for h. Whichever
is larger will dominate, suggesting the formula (8.9).
To make this intuition precise, we require several lemmas.

Lemma 8.11. For every £ € C, (€S, andn > 1,

1 n 1og2
~log|¢" — ¢"| < log* [¢] + ==

Proof. If [¢] < 1, then |€™ — (™| < 2. If |£] > 1, then

1 1 1 ) £+ 1
oglé” = ¢"] < wlog(le +1) < 1 {tog el + 10g ST EL )

K

0g2 0

1
:10g|§+n10g<1+|§|n> < log €] +
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If 0 # ¢(u) € Clu], then (5.1) shows that m(¢) > —oo. We will use the con-
vention m(0) = —oo. With the usual conventions about arithmetic and about
inequalities involving —oo, the results that follow will make sense and are true even
if some of the polynomials are 0.

Lemma 8.12. Suppose that ¢p(u) € Clu] has degree < D. Then for every ¢ € S
andn > 1,

Dlog?2
-

R, (log|¢])( Zlog |p(e*™/m¢)| < m(9) +

(8.12)

Proof. Let n > 1 and w = €*™/", so that R, (log|d])(¢) = £ Z log\(b wI()].

Let ¢(u) = cqu?+- - -+ o, where d < D and cq # 0. Then ¢(u ) =cq szl(u—fk),
and by Lemma 8.11,

d n—1

1 .
Ry, (log |¢]) (¢ Zlog ca H WIC— &) =logleal + > > log |w/¢ — &
k=1 j=0
1 n—1 1 d
= log |ca| + ;Zlog [1(w¢—&0)| =logleal + 3 logl¢" — &
k=1 7=0 k=1
d10g2 Dlog2
log™ . O
ch|+Z og™ [&k] + <m(e) + —

Lemma 8.13. Let ¢(u),¢(u) € Clu] each have degree < D. Then for every n >
(Dlog2)/e,
maae{m(), (1)} < [ max{R, (o8]0 (€). R (0g [#)(Q)} ¢

< max{m(¢), m(y)} +¢.

Proof. If n > (Dlog2)/e, then the previous lemma implies that for every ¢ € S we
have R, (log|¢])(¢) < m(¢) + € and R, (log|¢)(¢) < m(¥) + &. Hence,

max{ R, (log |¢|) (¢), Rn (log[¥]) (C)} < max{m(¢), m(s)} +e,

and the second inequality follows by integrating over ¢ € S.
For the first inequality, observe that

m($) = /S . (log 6]) (¢ / max{ R, (1og]61) (C), R (log []) (0)} dC.

and similarly for ¢. O

We need one more property of Mahler measure, proved by Boyd [10]. Recall that
M(¢) = exp(m(¢)), and by convention exp(—oco) = 0.

Theorem 8.14 [10]. The map CP*1 — [0,00) given by
(co,¢1y-..,¢p) — M(co+clu+-~-+cDuD)

18 continuous.
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Continuity is clear when the coefficients remain bounded away from 0 since the
roots are continuous functions of the coefficients. But if ¢p — 0, for example,
then continuity is more subtle. Boyd’s proof, which also applies to polynomials in
several variables with bounded degree, uses Graeffe’s root-squaring method, thereby
managing to sidestep various delicate issues and leading to a remarkably simple
proof.

Proof of Theorem 8.9.1f ¢ € (2, then as we saw in (8.11),

qg—1
det A¢ £(¢,m) H g(n¢?, ) + (=) [ ] hln¢,0)
j=0
By (5.1), for any complex numbers a and b,

/log la -+ £9b| d¢ = max{log al, log b]}.
S

Hence,

qg—1
log Hh(néj,é)‘}-

=0

/log ’det A&f(fa 77)‘ d§ = max{log
S

q—1
1o, 0],
=0

It follows that
1
g//S2 10g|detAc,f(f777)|d§d77
:/SmaX{Rq(10g|g(.’C)|)(77)7Rq(log|h('7C)|)(77)}d77'

Let ¢ > 0. Writing g¢(y) = g(y,¢) and h¢(y) = h(y,(), we note that these are
Laurent polynomials of uniformly bounded degree < D in C[y*], where the degree
of a Laurent polynomial is the length of its Newton polygon. Applying Lemma 8.13
to g¢c and h¢, we get that for ¢ > (Dlog2)/e

miac{m(g(-.0).m((- )} < 1 [ o fdet Acs(€.m)| dean
< max{m(g(-,¢)),m(h(-,¢))} +e.

We must now consider the possibility that for some ¢ € S both g(y, ¢) and h(y, ()
vanish as polynomials in C[y*]. We claim that this never happens if a; is expansive.
Let

z) = Zgj(z)yj and  h(y, z th k where g;(2),hi(2) € Z[z%].

If (o € S were a common zero for all the g;(z) and hg(z), then its minimal poly-
nomial over Q would divide every g;(z) and hi(z). But then at the non-zero
point w = >, .\ b aiyi2k € £°(T,C) we would have py(w) = 0, contradicting
expansiveness.
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Thus, the function ¢ — max{m(g(-,¢)),m(h(-,¢))} is continuous on S. Hence,

the sums
2 Z // log |det A¢ 7(&,n)| d¢ dn

e,

approximate h(ay) by Theorem 8.8 and at the same time are also Riemann sums
over (), of the continuous function max{m(g(-,¢)),m(h(-,¢))}, and so converge
to the integral in (8.9). O

Our proof of Theorem 8.9 made use of the expansiveness hypothesis for ay to
approximate the entropy with the help of the periodic points. But surely the entropy
formula (8.9) is valid more generally.

Problem 8.15. Is the entropy formula (8.9), proven for linear polynomials in ZT',
valid for arbitrary g(y,z) and h(y, z) in Zy*, 2%]?

It will follow from results in the next section that (8.9) is valid if either g =1
or h=1.

Let us turn to the quadratic case f(x,y,2) = go(y,2) + zg1(y, 2) + 2%g2(y, 2).
We start with a simple result about determinants.

Lemma 8.16. Let a;, bj, and ¢; (0 < j < g — 1) be arbitrary complex numbers.
Then

Qo bo Co 0 .o 0 0
0 ay by ¢ ... 0 0 b e q—1
det | ... ... .. oo o Lo L Haj—trH[_aJ_ 6}—}-1_[0]
Cq—2 0 0 0 ce. Qg2 bq_2 7=0 7 7=0
bq—l Cq—1 0 0 [P 0 Gg—1
If cjaj 1 = —bjbj1 for all j, where subscripts are taken mod q, then the value of

this determinant simplifies to

Ha] Ul + 07) Hb +Hc],

where 7 = (1 ++/5)/2 and 0 = —1/7.

Proof. Taking subscripts mod ¢, a permutation 7 of {0,1,...,¢ — 1} contributes
a non-zero summand in the expansion of the determinant if and only if it has
the form 7(j) = j + ¢€;, where ¢; = 0, 1, or 2. The sequences {¢;} € {0,1,2}4
corresponding to permutations are precisely the closed paths of length ¢ in the
labelled shift of finite type depicted in Fig. 2

The paths 00...0 and 22...2 give the terms agai---aq—1 and coci -+~ cq—1,
respectively, while it is easy to check that the golden mean shift of finite type
produces the middle term of the result.

If cjaj 41 = —bjbjy1 for all j, then we can replace each occurrence of a block 20
in a closed path of length ¢ by the block 11, changing the factor c;a;41 to b;bj41
together with an appropriate sign change. The result of these substitutions is that
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Figure 2

every closed path of length ¢ in the golden mean shift gives the same contribu-
tion —(—1)%bgby - - - by—1 to the expansion of the determinant, and the number of

q
such paths is tr E (ﬂ =719409. 0

We use this to derive quadratic analogues of (8.10) and (8.11).

Corollary 8.17. Let f(x,y,2) = go(y,2) + xg1(y, 2) + 2%g2(y, 2) € ZT'. Suppose
that ¢ € Q, and for (§,n) € S* define A¢,§(€,m) as above. Then

J J
det A¢,£(,1) Hgo (n¢’,¢ )9~ ltrH [ %0777’4@ )¢ 92(7740 Q)€
+¢% H 92(n¢’?, ). (8.13)
=0

If 91(y, 2)91(yz, 2) = —92(y, 2)90(yz, 2), then

det A, 7 (§,m) Hgo 1¢7, Q) + (1)1 H (7T + 0 7)¢! H91 n¢?, ¢
j=0
+ &% ng(néj,C)- (8.14)
7=0

Motivated by Theorem 8.8 and the rigorous results from the expansive lin-
ear case, we can now formulate a reasonable conjecture about entropy in the
quadratic case.

As in the linear case, for fixed irrational ¢ the growth rates of the first and third
terms in (8.13) are given by m(go(-,¢)) and m(g2(-,¢)). The growth rate for the
second term should be the same for almost every choice of (£,7) € S?, and if this
is so, then denote this value by bs(¢). For example, in the case g1(y, 2)g1(yz, z) =

—92(y, 2)g0(yz, z) we see from (8.14) that by({) = log T + m(gl( ~,C)).
Problem 8.18. Let f(x,y,2) = go(y,2) + 191 (y, 2) + 2292(y, 2) € ZI'. Is

h(ay) :/Smax{m(go<-,o),bf(o,m(gQ(-,<>>}d<?

In particular, if
91(y,2)91(yz, 2) = —92(y, 2)90(y2, 2),
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h(af) :/Smax{m(g()(5<))310g7—+m(91(7C))7m(92(7§))}d<? (815)

Example 8.19. Fix g(y, 2) € ZT', and let go(y, 2) = —g(yz~",2)g(y, 2), 91(y, 2) =
9(y, z), and ga(y, z) = 1. These satisfy the conditions for (8.15), and this formula
becomes

h(ay) /maX{Qm ¢)),log7+m(g(-,¢)),0} dc. (8.16)

For example, letting g(y,z) = (2 — 1)y + 22 — 1, we see that for each of the three
functions in (8.16) there is a range of ¢ for which it is the maximum function.

A similar analysis can be carried out for higher-degree polynomials, but the eval-
uation of the relevant determinants now involves a finite family of more complicated
(and interesting) shifts of finite type.

9. Lyapunov exponents and entropy

The methods of the previous section to compute entropy have some serious lim-
itations because of the expansiveness assumptions. There is a more geometric
approach to entropy, using the theory of Lyapunov exponents, which Deninger used
in [16] to calculate Fuglede-Kadison determinants (or equivalently by Theorem 7.5,
entropy) in much greater generality.

To motivate this approach, we first recall the linear example f(z,y,z) =
g(x, z) € ZT. For v ¢ defined in (5.2) and for w = Y>> ¢, ve ¢ y™ with py(w)
we have from (5.3) that

?/

e = {Tﬁ:g(fc%o}c@ (9.1)

For irrational ¢, the products in (9.1) have growth rate

n—1 n—1
Lo/ T g(écj,o‘ = LS oxla(ec?. 0 = ma(-.0)).
=0 =0

and the limit is the same for almost every £ by the ergodicity of irrational rotations.
For toral automorphisms, the entropy is the sum of the growth rates on various
eigenspaces that are positive. By analogy, we would expect the entropy here to be
the integral of the positive growth rates, that is,

h(ay) :/Smax{m(g(~,g)),0} dcg. (9.2)

This is a special case of (8.9), but with no assumptions on g.
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Indeed, since the eigenspaces here are 1-dimensional, the techniques used in [44]
can be adapted to prove the validity of (9.2) for every 0 # g € Z[z*, 2*]. However,
since this will be subsumed under Deninger’s results, there is no need to provide
an independent proof here.

To state the main result in [16], we need to give a little background. For each
irrational ¢ € S there is the rotation algebra 7, which is the von Neumann algebra
version of the twisted [! algebras used in Allan’s local principle (see [3] for details).
There are also natural maps mc: AT — 7. As explained in [15], §5, there is
a faithful normalized trace function tr¢ on each o7 such that tr_yr(a) = [ tre(a) dC
for every a € A'T. This implies that for determinants we have

logdet_yr(a) = /Slog det(7¢(a)) dC. (9.3)

Hence, we need a way of evaluating the integrands for a = py.
Suppose that f € ZI' is monic in y and of degree D, and so has the form

D—-1

fla,y,2) =yP = gpoa(x, 2)y" "t = = go(, 2),

where g;(z,2) € Z[z*,2*] and gy # 0. Calculations similar to those in Exam-
ple 5.13 show that if py (Zio cnvgygy”) =0, then for all n

(oo}

Cntp = gp-1(6C", Q) enyp—1+ gp—2(6C", Q) enyp—2+ - - + 90(£C", {)cn.

Put
0 1 0 o 0
0 0 1 ... 0
A= | : R P Y
gO(faC) gl(f?C) g2(§7<) ce gD—1(§7C)
and let

An(fv C) = A(fcn_l? C)A(fcn_Qa C) T A(ga C)

be the corresponding cocycle. Then the recurrence relation for {c,} can be writ-
ten as
Co Cp,
A&Q | | =

CDh-1 Cn+D—1

The A, (&, ¢) are D x D matrices, and we need to include all directions with
positive growth rate. There is a deep and important theorem governing this.

Theorem 9.1 (Oseledets Multiplicative Ergodic Theorem [54]). Let T' be an invert-
ible ergodic measure-preserving transformation on a probability space (Q,v), and let
B: Q — CP*P be a measurable map from Q to the Dx D complex matrices such that
Jolog" | B(w)||dv(w) < co. Then there exist a T-invariant measurable set Qg C €
with v(Qg) = 1, a number M < D, real numbers x1 < x2 < -+ < X, multiplici-
ties r1,...,ram = 1 with vy + -+ + 7y = D, and measurable maps V; from Qg to
the space of rj-dimensional subspaces of CP such that for all w € Qo
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3) 1 ||B(Tn 1w) (T’I’L*zw) . B(w)'UH —X; unifO’i‘mly for 0 7é v E VJ(W)

To apply this result to our situation, fix an irrational ¢ € S. Let T¢: S — S
be given by T¢(§) = £(¢, and let B(§) = A(£, (). Since the entries of the matrix
B(¢) are continuous with respect to &, it is clear that [;log™ ||B(£)|| < co. Hence,
there are Lyapunov exponents x;(¢) and multiplicities ;({). With these in hand,
we can now state Deninger’s main result from [16] as it applies to the Heisenberg
case.

Theorem 9.2. Let f(x,y,2) = y? —gp_1(z,2)yP~1 — -+ — go(w, 2) € ZT', where
g;(z,2) € Z[z*,2%] and go # 0. For every irrational ( denote the Lyapunov
exponents for A(§,¢) and T¢ as above by x,;(C) with multiplicities r;((). Then

log det¢(me(py)) er
and hence by Theorem 7.5 and (9.3),
h(ay) = logdet yrps = /Szrj(g)xj(g)+ d¢. (9.5)
J

Example 9.3. Let f(z,y,2) = y?> — (22 — 1)y + 1. For each (£,¢) € S? there is
a non-zero vector v(¢,¢) € C? and a multiplier x(¢,¢) € C with |k(£,¢)| > 1 such
that

Since the determinants of these matrices all have absolute value 1, there is exactly
one non-negative Lyapunov exponent of multiplicity 1. For each irrational ( € S
its value is given by x(¢) = [slog|s(€, ()| d¢, and hence

o) = [ ac= [ tozste.)laac

A numerical calculation of the graph of log|k(&, ()| is shown in Fig. 3, and
indicates the complexity of these phenomena even in the quadratic case.

Although Lyapunov exponents are generally difficult to compute, there is a
method to obtain rigorous lower bounds on the largest Lyapunov exponent, known
as ‘Herman’s subharmonic trick’. Its use in our context was suggested to us by
Michael Bjorklund.

Proposition 9.4. Let f(z,v,2) = y® — gp_1(z, 2)yP?~1 — -+ — go(z,2) € ZI,
where g;(z,z) € Zlz,zF], so that only non-negative powers of x are allowed, and
go(z,2) # 0. For every irrational ( € S let Xo(¢) denote the largest Lyapunov
exponent in Theorem 9.2. Then

Xoo(€) = logspr A(0, ¢),
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Figure 3. Graph of log |x(&, {)|.

where A(E,() is the matriz given in (9.4), and spr denotes the spectral radius of
a complex matriz. In particular,

h(ay) = /S10g+ spr A(0, ¢) d¢. (9.6)

Proof. Fix an irrational ( € S. Put B(x) = A(x,(), and let T'(z) = (z. For
a complex matrix C' = [¢;;] define ||C|| = max; j{|c;;|}. Theorem 9.1 shows that
for almost every £ € S we have

o1 e e
Xoo(Q) = lim —log |[B(T"™1)B(T"%¢) - B(¢)]-
n—oo N,
We multiply the matrices:
B(T"'0)B(T" ) -~ B(a) = [b} (2)],
where the bl(»;l) () are polynomials in = with complex coefficients. Each func-

tion log |b§?)(§)| is subharmonic for £ € C, and hence max; ;{log |b§?)(§)|} is also
subharmonic for £ € C. Thus,

mave{log ] O)1} < [ mas{log ()1} e

Furthermore,

j

1 1
—max{log b7 (0)]} = - log [|B(0)"]| — logspr B(0) = logspr A(0,()



710 D. Lind and K. Schmidt

as n — oo. The entries in A(&,(¢) are uniformly bounded above, and hence
(1/n)log |b£;)(§)| is uniformly bounded for all n > 1 and & € S. Thus,

Xl = [ Jim g BT OB 3) - B de

> limsup / % log | B(T"Y¢)B(T"2%¢) -~ B(£)|| d¢

n— o0 S

> limsupllogHB(O)”H = logspr A(0, ¢). O
n—oo N
Observe that since only non-negative powers of x are allowed, this result is
reminiscent of the face entropy inequality in Corollary 7.9. It is stronger, since it
gives a lower bound for every irrational ¢, but the integrated form (9.6) is weaker,
since it uses only the top Lyapunov exponent to give a lower bound for the entropy
of the face corresponding to x = 0.

Example 9.5. We finish by returning to Example 5.13. Let f(x,y,2) = y*> — 2y —
1 € ZI'. Using the change of variables z — vy, y — « and z — 2z~ !, f becomes monic
and linear in y, hence by the previous theorem we can compute that h(ay) = 0. On
the other hand, treating f as monic and quadratic in y, we see that the Lyapunov
exponents must all be < 0. But the determinant has absolute value 1, and so in
fact the Lyapunov exponents must vanish almost everywhere. In other words,

([} e

j=n—1

lim — log
n—oo n

‘ =0 for almost every (£,¢) € S%. (9.7

By taking transposes to reverse the order of the factors, we obtain (1.1) in the
Introduction. Although this appears to be a simple result, we have not been able
to obtain it as a consequence of any known results in random matrix theory.

Bibliography

[1] R.L. Adler, A. G. Konheim, and M. H. McAndrew, “Topological entropy”, Trans.
Amer. Math. Soc. 114:2 (1965), 309-319.

[2] G.R. Allan, “Ideals of vector-valued functions”, Proc. London Math. Soc. (3) 18:2
(1968), 193-216.

[3] J. Anderson and W. Paschke, “The rotation algebra”, Houston J. Math. 15:1
(1989), 1-26.

[4] G. Atkinson, “A class of transitive cylinder transformations”, J. London Math.

Soc. (2) 17:2 (1978), 263-270.

[5] C. Béguin, A. Valette, and A. Zuk, “On the spectrum of a random walk on the
discrete Heisenberg group and the norm of Harper’s operator”, J. Geom. Phys. 21:4
(1997), 337-356.

[6] A.S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc.
Cambridge Philos. Soc. 47 (1951), 38-45.

[7] L. Bowen, “Entropy for expansive algebraic actions of residually finite groups”,
Ergodic Theory Dynam. Systems 31:3 (2011), 703-718.


http://dx.doi.org/10.2307/1994177
http://dx.doi.org/10.2307/1994177
http://dx.doi.org/10.1112/plms/s3-18.2.193
http://dx.doi.org/10.1112/plms/s3-18.2.193
https://zbmath.org/?q=an:0703.22005
https://zbmath.org/?q=an:0703.22005
http://dx.doi.org/10.1112/jlms/s2-17.2.263
http://dx.doi.org/10.1112/jlms/s2-17.2.263
http://dx.doi.org/10.1016/S0393-0440(96)00024-1
http://dx.doi.org/10.1016/S0393-0440(96)00024-1
http://dx.doi.org/10.1016/S0393-0440(96)00024-1
https://zbmath.org/?q=an:03086600
https://zbmath.org/?q=an:03086600
 http://dx.doi.org/10.1017/S0143385710000179
 http://dx.doi.org/10.1017/S0143385710000179

18]
191
[10]

[11]

12]
13]
14]
115]
16]

[17]

18]

[19]

[20]
21]
22]

23]

[24]

[25]

[26]
27]

(28]

Survey of Heisenberg actions 711

R. Bowen, “Entropy for group endomorphisms and homogeneous spaces”, Trans.
Amer. Math. Soc. 153 (1971), 401-414.

D.W. Boyd, “Kronecker’s theorem and Lehmer’s problem for polynomials in several
variables”, J. Number Theory 13:1 (1981), 116-121.

D. W. Boyd, “Uniform approximation to Mahler’s measure in several variables”,
Canad. Math. Bull. 41:1 (1998), 125-128.

N.-P. Chung and H. Li, “Homoclinic groups, IE groups, and expansive algebraic
actions”, Invent. Math. 199:3 (2015), 805-858; 2011 (v3 — 2014), 49 pp., arXiv:
1103.1567.

P.J. Cohen, “A note on constructive methods in Banach algebras”, Proc. Amer.
Math. Soc. 12 (1961), 159-163.

J.B. Conway, A course in functional analysis, 2nd ed., Grad. Texts in Math.,

vol. 96, Springer-Verlag, New York 1990, xvi+399 pp.

P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Math., Univ.
of Chicago Press, Chicago, IL 2000, vi+310 pp.

Ch. Deninger, “Fuglede-Kadison determinants and entropy for actions of discrete
amenable groups”, J. Amer. Math. Soc. 19:3 (2006), 737-758.

Ch. Deninger, “Determinants on von Neumann algebras, Mahler measure and
Ljapunov exponents”, J. Reine Angew. Math. 651 (2011), 165-185.

Ch. Deninger and K. Schmidt, “Expansive algebraic actions of discrete residually
finite amenable groups and their entropy”, Ergodic Theory Dynam. Systems 27:3
(2007), 769-786.

M. Einsiedler and H. Rindler, “Algebraic actions of the discrete Heisenberg group
and other non-abelian groups”, Aequationes Math. 62:1-2 (2001), 117-135.

M. Einsiedler and K. Schmidt, “Markov partitions and homoclinic points of
algebraic Z%-actions”, Junamuueckue cucmemv, u cmesicrve 6onpoco,, COOPHIK
crareit. K 60-1eTuto co nHa poxaeHusa akagemuka Jmurpus Bukroposuua
Amnocosa, Tp. MUUAH, 216, Hayka, M. 1997, c. 265-284; also published in Proc.
Steklov Inst. Math. 216 (1997), 259-279.

K. Fraczek and M. Lemanczyk, “On symmetric logarithm and some old examples in
smooth ergodic theory”, Fund. Math. 180:3 (2003), 241-255.

B. Fuglede and R. V. Kadison, “Determinant theory in finite factors”, Ann. of
Math. (2) 55:3 (1952), 520-530.

H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in
Diophantine approximation”, Math. Systems Theory 1 (1967), 1-49.

A.O. Tenbdona, Tpancuendenmmvie u arzebpauneckue wucaa, locrexuzmar, M.
1952, 224 c.; English transl., A.O. Gelfond, Transcendental and algebraic numbers,
Dover Publications, Inc., New York 1960, vii+190 pp.

M. Géll, K. Schmidt, and E. Verbitskiy, “Algebraic actions of the discrete
Heisenberg group: expansiveness and homoclinic points”’, Indag. Math. (N.S.) 25:4
(2014), 713-744.

M. Goll, K. Schmidt, and E. Verbitskiy, A Wiener lemma for the discrete
Heisenberg group: invertibility criteria and applications to algebraic dynamics,
preprint.

M. Goll and E. Verbitskiy, Homoclinic points of principal algebraic actions,
preprint.

W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc.
Collog. Publ., vol. 36, Amer. Math. Soc., Providence, RI 1955, vii4+151 pp.

D. Gretete, “Random walk on a discrete Heisenberg group”, Rend. Clirc. Mat.
Palermo (2) 60:3 (2011), 329-335.


http://dx.doi.org/10.1090/S0002-9947-1971-0274707-X
http://dx.doi.org/10.1090/S0002-9947-1971-0274707-X
http://dx.doi.org/10.1090/S0002-9947-1971-0274707-X
http://dx.doi.org/10.1090/S0002-9947-1971-0274707-X
http://dx.doi.org/10.4153/CMB-1998-019-6
http://dx.doi.org/10.4153/CMB-1998-019-6
http://dx.doi.org/10.1007/s00222-014-0524-1
http://dx.doi.org/10.1007/s00222-014-0524-1
http://arxiv.org/abs/1103.1567
http://arxiv.org/abs/1103.1567
http://dx.doi.org/10.1090/S0002-9939-1961-0124515-4
http://dx.doi.org/10.1090/S0002-9939-1961-0124515-4
https://zbmath.org/?q=an:00047995
https://zbmath.org/?q=an:00047995
https://zbmath.org/?q=an:01544074
https://zbmath.org/?q=an:01544074
http://dx.doi.org/10.1090/S0894-0347-06-00519-4
http://dx.doi.org/10.1090/S0894-0347-06-00519-4
http://dx.doi.org/10.1515/crelle.2011.012
http://dx.doi.org/10.1515/crelle.2011.012
http://dx.doi.org/10.1017/S0143385706000939
http://dx.doi.org/10.1017/S0143385706000939
http://dx.doi.org/10.1017/S0143385706000939
http://dx.doi.org/10.1007/PL00000133
http://dx.doi.org/10.1007/PL00000133
http://mi.mathnet.ru/eng/tm1011
http://mi.mathnet.ru/eng/tm1011
http://mi.mathnet.ru/eng/tm1011
http://mi.mathnet.ru/eng/tm1011
https://zbmath.org/?q=an:0954.37008
https://zbmath.org/?q=an:0954.37008
http://dx.doi.org/10.4064/fm180-3-3
http://dx.doi.org/10.4064/fm180-3-3
http://dx.doi.org/10.2307/1969645
http://dx.doi.org/10.2307/1969645
http://dx.doi.org/10.1007/BF01692494
http://dx.doi.org/10.1007/BF01692494
https://zbmath.org/?q=an:03074959
https://zbmath.org/?q=an:03074959
https://zbmath.org/?q=an:03147675
https://zbmath.org/?q=an:03147675
http://dx.doi.org/10.1016/j.indag.2014.04.007
http://dx.doi.org/10.1016/j.indag.2014.04.007
http://dx.doi.org/10.1016/j.indag.2014.04.007
https://zbmath.org/?q=an:03114014
https://zbmath.org/?q=an:03114014
http://dx.doi.org/10.1007/s12215-011-0053-3
http://dx.doi.org/10.1007/s12215-011-0053-3

712
[20]
130]
31]
[32]
33]
341

[35]

[36]
[37]
[38]

[39]

[40]
[41]

[42]

[43]

[44]
[45]
[46]
[47]
(48]
[49]

[50]

D. Lind and K. Schmidt

P.R. Halmos, “On automorphisms of compact groups”, Bull. Amer. Math. Soc. 49
(1943), 619-624.

B. Hayes, Ergodicity of nilpotent group actions, Gauss’s lemma and mixing in the
Heisenberg group, Senior thesis, Univ. of Washington, Seattle 2009, 21 pp.

B. Hayes, Mixing principal algebraic actions of torsion-free nilpotent groups,
preprint.

J. W. Jenkins, “An amenable group with a nonsymmetric group algebra”, Bull.
Amer. Math. Soc. 75 (1969), 357-360.

I. Kaplansky, “Groups with representations of bounded degree”, Canadian J. Math.
1 (1949), 105-112.

I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, IL.-London 1969,
ix+198 pp.

R. Kenyon and A. Vershik, “Arithmetic construction of sofic partitions of
hyperbolic toral automorphisms”, Ergodic Theory Dynam. Systems 18:2 (1998),
357-372.

B. Kitchens and K. Schmidt, “Automorphisms of compact groups”, Ergodic Theory
Dynam. Systems 9:4 (1989), 691-735.

F. Ledrappier, “Un champ markovien peut étre d’entropie nulle et mélangeant”,
C. R. Acad. Sci. Paris Sér. A-B 287:7 (1978), A561-A563.

H. Li, “Compact group automorphisms, addition formulas and Fuglede-Kadison
determinants”, Ann. of Math. (2) 176:1 (2012), 303-347.

H. Li, J. Peterson, and K. Schmidt, “Ergodicity of principal algebraic group
actions”, Recent trends in ergodic theory and dynamical systems, Contemp. Math.,
vol. 631, Amer. Math. Soc., Providence, RI 2015, pp. 201-210.

H. Li and A. Thom, “Entropy, determinants, and L?-torsion”, J. Amer. Math. Soc.
27:1 (2014), 239-292.

D. Lind and K. Schmidt, “Homoclinic points of algebraic Z%-actions”, J. Amer.
Math. Soc. 12:4 (1999), 953-980.

D. Lind, K. Schmidt, and E. Verbitskiy, “Entropy and growth rate of periodic
points of algebraic Z-actions”, Dynamical numbers — interplay between dynamical
systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc.,
Providence, RI 2010, pp. 195-211.

D. Lind, K. Schmidt, and E. Verbitskiy, “Homoclinic points, atoral polynomials,
and periodic points of algebraic Z%-actions”, Ergodic Theory Dynam. Systems 33:4
(2013), 1060-1081.

D. Lind, K. Schmidt, and T. Ward, “Mahler measure and entropy for commuting
automorphisms of compact groups”, Invent. Math. 101:3 (1990), 593-629.

D. A. Lind and T. Ward, “Automorphisms of solenoids and p-adic entropy”, Ergodic
Theory Dynam. Systems 8:3 (1988), 411-419.

E. Lindenstrauss and B. Weiss, “Mean topological dimension”, Israel J. Math. 115
(2000), 1-24.

W. Liick, L?-invariants: theory and applications to geometry and K -theory, Ergeb.
Math. Grenzgeb. (3), vol. 44, Springer-Verlag, Berlin 2002, xvi+595 pp.

K. W. MacKenzie, “Prime ideals in skew Laurent polynomial rings”, Proc.
Edinburgh Math. Soc. (2) 36:2 (1993), 299-317.

K. Mahler, “An application of Jensen’s formula to polynomials”, Mathematika 7:2
(1960), 98-100.

K. Mahler, “On some inequalities for polynomials in several variables”, J. London
Math. Soc. 37:1 (1962), 341-344.


http://dx.doi.org/10.1090/S0002-9904-1943-07995-5
http://dx.doi.org/10.1090/S0002-9904-1943-07995-5
http://dx.doi.org/10.1090/S0002-9904-1969-12170-1
http://dx.doi.org/10.1090/S0002-9904-1969-12170-1
http://dx.doi.org/10.4153/CJM-1949-011-9
http://dx.doi.org/10.4153/CJM-1949-011-9
https://zbmath.org/?q=an:03377408
https://zbmath.org/?q=an:03377408
http://dx.doi.org/10.1017/S0143385798100445
http://dx.doi.org/10.1017/S0143385798100445
http://dx.doi.org/10.1017/S0143385798100445
http://dx.doi.org/10.1017/S0143385700005290
http://dx.doi.org/10.1017/S0143385700005290
https://zbmath.org/?q=an:03602448
https://zbmath.org/?q=an:03602448
http://dx.doi.org/10.4007/annals.2012.176.1.5
http://dx.doi.org/10.4007/annals.2012.176.1.5
http://dx.doi.org/10.1090/conm/631/12604
http://dx.doi.org/10.1090/conm/631/12604
http://dx.doi.org/10.1090/conm/631/12604
http://dx.doi.org/10.1090/S0894-0347-2013-00778-X
http://dx.doi.org/10.1090/S0894-0347-2013-00778-X
http://dx.doi.org/10.1090/S0894-0347-99-00306-9
http://dx.doi.org/10.1090/S0894-0347-99-00306-9
http://dx.doi.org/10.1090/conm/532
http://dx.doi.org/10.1090/conm/532
http://dx.doi.org/10.1090/conm/532
http://dx.doi.org/10.1090/conm/532
http://dx.doi.org/10.1017/S014338571200017X
http://dx.doi.org/10.1017/S014338571200017X
http://dx.doi.org/10.1017/S014338571200017X
http://dx.doi.org/10.1007/BF01231517
http://dx.doi.org/10.1007/BF01231517
http://dx.doi.org/10.1017/S0143385700004545
http://dx.doi.org/10.1017/S0143385700004545
http://dx.doi.org/10.1007/BF02810577
http://dx.doi.org/10.1007/BF02810577
http://dx.doi.org/10.1007/978-3-662-04687-6
http://dx.doi.org/10.1007/978-3-662-04687-6
http://dx.doi.org/10.1007/978-3-662-04687-6
http://dx.doi.org/10.1007/978-3-662-04687-6
http://dx.doi.org/10.1007/978-3-662-04687-6
http://dx.doi.org/10.1007/978-3-662-04687-6
http://dx.doi.org/10.1112/jlms/s1-37.1.341
http://dx.doi.org/10.1112/jlms/s1-37.1.341

[51]
[52]
[53]

[54]

[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]

[63]

[64]
[65]
[66]

[67]

[68]

[69]

[70]

Survey of Heisenberg actions 713

M. S. Montgomery, “Left and right inverses in group algebras”, Bull. Amer. Math.
Soc. 75:3 (1969), 539-540.

J. Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in
Math., vol. 1115, Springer-Verlag, Berlin 1985, vi+147 pp.

D.S. Ornstein and B. Weiss, “Entropy and isomorphism theorems for actions of
amenable groups”, J. Analyse Math. 48 (1987), 1-141.

B. U. Ocenepnern, “MynbTuninkaTuBHasi 3projgudeckasi TeOpeMa.
XapakTepucrudeckue nokasaresnn JIsmynosa nuaamudeckux cucrem”, Tp. MMO,
19, Uzn-Bo Mock. yu-Ta, M. 1968, c. 179-210; English transl., V.I. Oseledets,

“A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical
systems”, Trans. Moscow Math. Soc. 19 (1968), 197-231.

D.S. Passman, “Idempotents in group rings”, Proc. Amer. Math. Soc. 28:2 (1971),
371-374.

D.S. Passman, The algebraic structure of group rings, Pure Appl. Math., Wiley-
Interscience [John Wiley & Sons|, New York-London-Sydney 1977, xiv+720 pp.
K. Purbhoo, “A Nullstellensatz for amoebas”’, Duke Math. J. 141:3 (2008), 407-445.
D.J. Rudolph and K. Schmidt, “Almost block independence and Bernoullicity of
Z%-actions by automorphisms of compact abelian groups”, Invent. Math. 120:3
(1995), 455-488.

K. Schmidt, “Automorphisms of compact abelian groups and affine varieties”, Proc.
London Math. Soc. (3) 61:3 (1990), 480-496.

K. Schmidt, Dynamical systems of algebraic origin, Progr. Math., vol. 128,
Birkh&user Verlag, Basel 1995, xviii+310 pp.

K. Schmidt, “Algebraic coding of expansive group automorphisms and two-sided
beta-shifts”, Monatsh. Math. 129:1 (2000), 37-61.

N. A. Sidorov, “Bijective and general arithmetic codings for Pisot toral
automorphisms”, J. Dynam. Control Systems 7:4 (2001), 447-472.

N. Sidorov and A. Vershik, “Bijective arithmetic codings of hyperbolic
automorphisms of the 2-torus, and binary quadratic forms”, J. Dynam. Control
Systems 4:3 (1998), 365-399.

C.J. Smyth, “A Kronecker-type theorem for complex polynomials in several
variables”, Canad. Math. Bull. 24:4 (1981), 447-452.

C.J. Smyth, “On measures of polynomials in several variables”, Bull. Austral. Math.
Soc. 23:1 (1981), 49-63.

R. K. Thomas, “The addition theorem for the entropy of transformations of
G-spaces”’, Trans. Amer. Math. Soc. 160 (1971), 119-130.

A.M. Bepmuk, “Apudmerndeckuii ”30MOpPPU3M rUEpOOJITIECKIX
aBTOMOPMU3MOB TOPa 1 COPUIECKUX CABUTOB”, DYHKY. AHAAU3 U €20 NPUA.

26:3 (1992), 22-27; English transl., A. M. Vershik, “Arithmetic isomorphism of
hyperbolic toral automorphisms and sofic shifts”, Funct. Anal. Appl. 26:3 (1992),
170-173.

T.B. Ward and Q. Zhang, “The Abramov—Rokhlin entropy addition formula for
amenable group actions”, Monatsh. Math. 114:3-4 (1992), 317-329.

B. Weiss, “Monotileable amenable groups”, Topology, ergodic theory, real algebraic
geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence,
RI 2001, pp. 257—262.

C. A. FO3BuHCKUii, “MerpuyecKkre CBONCTBA YHIOMOPMU3MOB KOMIIAKTHBIX
rpyn”’, Hze. AH CCCP. Cep. mamem. 29:6 (1965), 1295-1328; English transl.,
S. A. Yuzvinskii, “Metric properties of endomorphisms of compact groups”,

Amer. Math. Soc. Transl. Ser. 2, vol. 66, Amer. Math. Soc., Providence, RI 1968,
pp- 63-98.


http://dx.doi.org/10.1090/S0002-9904-1969-12234-2
http://dx.doi.org/10.1090/S0002-9904-1969-12234-2
https://zbmath.org/?q=an:0558.28010
https://zbmath.org/?q=an:0558.28010
http://dx.doi.org/10.1007/BF02790325
http://dx.doi.org/10.1007/BF02790325
http://mi.mathnet.ru/eng/mmo214
http://mi.mathnet.ru/eng/mmo214
http://mi.mathnet.ru/eng/mmo214
https://zbmath.org/?q=an:0236.93034
https://zbmath.org/?q=an:0236.93034
https://zbmath.org/?q=an:0236.93034
http://dx.doi.org/10.1090/S0002-9939-1971-0283101-2
http://dx.doi.org/10.1090/S0002-9939-1971-0283101-2
https://zbmath.org/?q=an:03574054
https://zbmath.org/?q=an:03574054
http://dx.doi.org/10.1215/00127094-2007-001
http://dx.doi.org/10.1007/BF01241139
http://dx.doi.org/10.1007/BF01241139
http://dx.doi.org/10.1007/BF01241139
http://dx.doi.org/10.1112/plms/s3-61.3.480
http://dx.doi.org/10.1112/plms/s3-61.3.480
https://zbmath.org/?q=an:00750226
https://zbmath.org/?q=an:00750226
http://dx.doi.org/10.1007/s006050050005
http://dx.doi.org/10.1007/s006050050005
http://dx.doi.org/10.1007/s006050050005
http://dx.doi.org/10.1007/s006050050005
http://dx.doi.org/10.1023/A:1022836500100
http://dx.doi.org/10.1023/A:1022836500100
http://dx.doi.org/10.1023/A:1022836500100
http://dx.doi.org/10.4153/CMB-1981-068-8
http://dx.doi.org/10.4153/CMB-1981-068-8
http://dx.doi.org/10.1017/S0004972700006894
http://dx.doi.org/10.1017/S0004972700006894
http://dx.doi.org/10.2307/1995794
http://dx.doi.org/10.2307/1995794
http://mi.mathnet.ru/eng/faa796
http://mi.mathnet.ru/eng/faa796
http://mi.mathnet.ru/eng/faa796
http://dx.doi.org/10.1007/BF01075629
http://dx.doi.org/10.1007/BF01075629
http://dx.doi.org/10.1007/BF01075629
http://dx.doi.org/10.1007/BF01299386
http://dx.doi.org/10.1007/BF01299386
https://zbmath.org/?q=an:0982.22004
https://zbmath.org/?q=an:0982.22004
https://zbmath.org/?q=an:0982.22004
http://mi.mathnet.ru/eng/im2948
http://mi.mathnet.ru/eng/im2948
https://zbmath.org/?q=an:0206.03602
https://zbmath.org/?q=an:0206.03602
https://zbmath.org/?q=an:0206.03602
https://zbmath.org/?q=an:0206.03602

714 D. Lind and K. Schmidt

[71] C.A. ¥OsBunckwuit, “Berauciaenne sHTpONMU rpymnmoBoro sugomMopdusma’,
Cub. mamem. orcypn. 8:1 (1967), 230-239; English transl., S. A. Yuzvinskii,
“Computing the entropy of a group of endomorphisms”, Siberian Math. J. 8 (1967),

172-178.

Douglas Lind

Department of Mathematics,
University of Washington,

Seattle, Washington 98195, USA
E-mail: 1ind@math.washington.edu

Klaus Schmidt

Mathematics Institute,

University of Vienna,
Oskar-Morgenstern-Platz 1, A-1090
Vienna, Austria;

Erwin Schrodinger Institute

for Mathematical Physics,

Boltzmanngasse 9, A-1090 Vienna, Austria
E-mail: klaus.schmidtQunivie.ac.at

Received 30/NOV /14


https://zbmath.org/?q=an:03335131
https://zbmath.org/?q=an:03335131
https://zbmath.org/?q=an:03335131
https://zbmath.org/?q=an:03335131
https://zbmath.org/?q=an:03335131
mailto:lind@math.washington.edu
mailto:klaus.schmidt@univie.ac.at

	Contents
	1 Introduction
	2 Algebraic actions
	3 Ergodicity
	4 Mixing
	5 Expansiveness
	6 Homoclinic points
	7 Entropy of algebraic actions
	8 Periodic points and entropy
	9 Lyapunov exponents and entropy
	Bibliography

